

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ANALYSIS AND DESIGN OF A DISTRIBUTED SYSTEM
FOR MANAGEMENT AND DISTRIBUTION OF

NATURAL LANGUAGE ASSERTIONS

by

Javier Palomo

September 2010

 Thesis Co-Advisors: Man-Tak Shing
 Bret Michael

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Analysis and Design of a Distributed System for
Management and Distribution of Natural Language Assertions

6. AUTHOR(S) Javier Palomo

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N.A.__________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This research entails the design and development of an automated system that allows researchers working remotely to
store, manage, and transfer assertion data to an external system run by the Intelligence Advanced Research Projects
Activity. The research stems from the University of Maryland's involvement in the Social-Cultural Content in
Language program which seeks to investigate methodologies, designs, and technologies that can contribute in the
understanding of the social goals of persons or groups of people by demonstrating a relationship between these goals
and their particular language use.

In this research we interview the stakeholders to determine the software requirements of the system. After a
careful analysis of the requirements we used the Unified Modeling Language notation to provide the reader a visual
model of the software design. Finally, we develop a working prototype of the proposed system consisting of two Web
services and a Web service client written in the Java programming language.

15. NUMBER OF
PAGES

159

14. SUBJECT TERMS
SOA, Web services, Assertions, Knowledge Base

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ANALYSIS AND DESIGN OF A DISTRIBUTED SYSTEM FOR MANAGEMENT AND
DISTRIBUTION OF NATURAL LANGUAGE ASSERTIONS

Javier Palomo

Major, United States Marine Corps
B.A., California State University–Fullerton, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2010

Author: Javier Palomo

Approved by: Man-Tak Shing
Thesis Co-Advisor

Bret Michael
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This research entails the design and development of an automated system that allows

researchers working remotely to store, manage, and transfer assertion data to an external

system run by the Intelligence Advanced Research Projects Activity. The research stems

from the University of Maryland's involvement in the Social-Cultural Content in

Language program, which seeks to investigate methodologies, designs, and technologies

that can contribute in the understanding of the social goals of persons or groups of people

by demonstrating a relationship between these goals and their particular language use.

In this research, we interview the stakeholders to determine the software

requirements of the system. After a careful analysis of the requirements, we used the

Unified Modeling Language notation to provide the reader a visual model of the software

design. Finally, we develop a working prototype of the proposed system consisting of

two Web services and a Web service client written in the Java programming language.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THE PROBLEM..1
B. THE SOLUTION...2
C. ORGANIZATION ...3

II. BACKGROUND ..5
A. SOCIAL CONTENT IN LANGUAGE..5

1. Introduction..5
2. SCIL Architecture ...6
3. Assertions..8

a. Claim..8
b. Evidence ..8
c. Support ..8

B. SERVICE-ORIENTED ARCHITECTURE ...9
1. SOA Introduction...9
2. Principles of SOA...11

a. Services Are Reusable...11
b. Services Share a Formal Contract ...11
c. Services Are Loosely Coupled...11
d. Services Abstract Away Underlying Logic11
e. Services Are Composable..12
f. Services Are Autonomous...12
g. Services Are Stateless..12
h. Services Are Discoverable...13

3. Benefits of Using SOA ...13
C. WEB SERVICES ...14

1. RESTful Web Services ..14
2. SOAP-Based Web Services ...15
3. Web Service Components..15

a. Services ..16
b. Description ..16
c. XML Schema (XSD) ...19
d. Messaging..21

D. SUMMARY ..23

III. SYSTEM REQUIREMENTS SPECIFICATION (SRS)25
A. OVERVIEW...25

1. Purpose..25
2. System Perspective...25
3. System Features and Domain Model..25
4. Intended Audience ...27

B. FUNCTIONAL REQUIREMENTS...27
1. Local User Stores Assertion..29

 viii

2. Local User Transfers Assertion to Knowledge Base..........................31
3. Local User Replaces Assertion in the External System.....................33
4. Local User Edits Assertion in Local Databas36
5. External User Queries ExplanationGetWS39
6. External User Queries StatusReportWS ..41
7 Administrator Sets the Capability Status ...42
8. Administrator Modifies a User Account ..44

C. OTHER FUNCTIONAL REQUIREMENTS ...48
1. System Access ..48
2. Database ..49
3. Local System Functionality ..50
4. Services and Clients ..51
5. User Interface (UI)..52

D. NONFUNCTIONAL REQUIREMENTS..53
1. Usability ...53
2. Reliability...54
3. Portability ..54
4. Supportability ..54

E. SUMMARY ..55

IV. SYSTEM DESIGN...57
A. DATABASE TIER...57

1. ER Diagram..59
2. Relational Database Schema...60

a. Mapping of Regular Entity Types ..60
b. Mapping of Weak Entity Types ..61
c. Mapping of Binary 1:1 Relationship Types61
d. Mapping of Binary 1:N Relationship Types62
e. Mapping of Binary M:N Relationship Types.........................62
f. Mapping of Multivalued Attributes ..63

B. BUSINESS LOGIC TIER ...64
1. XML Schema..64

a. StatusReportWS ..65
b. ExplanationGetWS ...66
c. KbUpdate Client ..70

2. Class Diagrams...73
a. StatusReport ..74
b. ExplanationGet ...77
c. KbUpdate ...81

C. WEB TIER ...82
1. UMD Services ...83
2. UMD Client...85

D. PRESENTATION TIER ...86
1. UI Web Pages ...87

a. Sign In ...88
b. Main Menu..89

 ix

c. Store Assertion ..90
d. Transfer Assertion...92
e. Edit Assertion Data ...94
e. Set Capability Status ...96
f. User Accounts ...97

2. UI Class Diagrams. ..99
E. SUMMARY ..106

V. PROTOTYPE...107
A. MYSQL DATABASE ..107

1. Status...108
2. AssertionData ...108

B. UMD OPERATIONS...110
1. StatusReport...111

a. Setting the Status...111
b. The Web Service..113

2. KbUpdate client ...114
a. Storing the assertion ...114
b. Updating the External Database ..116

3. ExplanationGetWS ..119
b. The Web Service..119

C. USER FEEDBACK..119
D. SUMMARY ..120

VI. CONCLUSION ..121
A. SYNOPSIS..121
B. FUTURE WORK...122

APPENDIX. XML SCHEMA..125

LIST OF REFERENCES..135

INITIAL DISTRIBUTION LIST ...137

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. SCIL architecture ...7
Figure 2. SOA architecture..10
Figure 3. REST Web service request / response (From Spies, 2008)14
Figure 4. SOAP Web service request / response (From Spies, 2008).............................15
Figure 5. WSDL, abstract interface description ..18
Figure 6. WSDL, concrete implementation description..19
Figure 7. XSD I ...20
Figure 8. XSD II..21
Figure 9. SOAP message...22
Figure 10. Domain model..27
Figure 11. Use case diagram ...28
Figure 12. Store assertion SSD..30
Figure 13. User transfers assertion SSD..33
Figure 14. User replaces assertion SSD ..36
Figure 15. Local user edits assertion SSD...38
Figure 16. External user queries ExplanationGetWS SSD ...40
Figure 17. External user queries StatusReportWS SSD..42
Figure 18. Administrator sets statuses SSD ..44
Figure 19. Modify user account (create) SSD...47
Figure 20. Modify user account (edit & delete) SSD..48
Figure 21. Four tiers of development ..57
Figure 22. Database ER diagram...60
Figure 23. Mapping of regular entity types...61
Figure 24. Mapping of weak entity types..61
Figure 25. Mapping of binary 1:1 relationship types ..62
Figure 26. Mapping of binary 1:N relationship types ...62
Figure 27. Mapping of binary M:N relationship types..63
Figure 28. Mapping of multivalued attributes...64
Figure 29. XML schema StatusReportResponseMsgPart ...65
Figure 30. XML schema ServiceState and ServiceStatusReport66
Figure 31. XML schema ExplanationGetResponseMsgPart...67
Figure 32. XML schema KbAssertion ..68
Figure 33. XML schema DataSource ..68
Figure 34. XML schema KbClaim..69
Figure 35. XML schema KbEvidence...69
Figure 36. XML schema KbSupport ...70
Figure 37. XML schema KbUpdateRequestMsgPart..71
Figure 38. XML schema AssertionAddBundle...71
Figure 39. XML schema AssertionDeleteBundle ...72
Figure 40. XML schema AssertionReplaceBundle...73
Figure 41. StatusReport class diagram part I ..75
Figure 42. StatusReport class diagram part II ...76

 xii

Figure 43. ExplanationGet class diagram part I ..77
Figure 44. ExplanationGet class diagram part II...78
Figure 45. ExplanationGet class diagram part III ...79
Figure 46. ExplanationGet class diagram part IV ...80
Figure 47. KbUpdate class diagram part I...81
Figure 48. KbUpdate class diagram part II ...82
Figure 49. UMD services WSDL part I ..83
Figure 50. UMD services WSDL part II ...84
Figure 51. UMD services WSDL part III..84
Figure 52. UMD services WSDL part IV..85
Figure 53. UMD client WSDL..86
Figure 54. Web architecture (From Booch, 2001) ..87
Figure 55. UI workflow...88
Figure 56. Sign-in Web page...89
Figure 57. Main menu Web page ..90
Figure 58. Store assertion I..91
Figure 59. Store assertion II ..91
Figure 60. Store assertion III...92
Figure 61. Transfer assertion I ..93
Figure 62. Transfer assertion II ...94
Figure 63. Edit assertion..95
Figure 64. Edit assertion II ..96
Figure 65. Select the status..97
Figure 66. User account I ..98
Figure 67. User account II...98
Figure 68. Modify account ..99
Figure 69. Update account...99
Figure 70. Main menu ...101
Figure 71. Store assertion..102
Figure 72. Transfer assertion...103
Figure 73. Transfer assertion II ...103
Figure 74. Edit assertion..104
Figure 75. Set capability statuses ..105
Figure 76. User accounts ...105
Figure 77. MySQL status table..108
Figure 78. MySQL assertionData table...109
Figure 79. MySQL assertion-related tables...110
Figure 80. Executing NPS_SCIL.jar ...111
Figure 81. Method call to write the statuses..112
Figure 82. Connection to the database ..112
Figure 83. Status table after execution ..112
Figure 84. Testing StatusReportWS..113
Figure 85. Deploying UMD ..114
Figure 86. Storing an assertion..115
Figure 87. Assertion in the database ...115

 xiii

Figure 88. External Web server...117
Figure 89. External Web server...118
Figure 90. External ID in the database ..118
Figure 91. Testing ExplanationGetWS ...119

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. Local user stores assertion ...29
Table 2. Local user transfers assertion to knowledge base ..31
Table 3. Local user replaces assertion ...33
Table 4. Local user edits assertione ...36
Table 5. External user queries ExplanationGetWS..39
Table 6. External user queries StatusReportWS ..41
Table 7. Administrator sets capability statuses..42
Table 8. Administrator modifies a user account ..44
Table 9. Stereotyped associations (From Conallen, 2003) ..101

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

BAA Broad Agency Announcement

CDM Conceptual Data Model

DBMS Database Management System

DMV Department of Motor Vehicles

DTG Date Time Group

ER Entity Relationship

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IARPA Intelligence Advanced Research Projects Activity

JAR Java Archive

JDBC Java Database Connectivity

LAN Local Area Network

ODBC Open Database Connectivity

SCIL Social-Cultural Content in Language

UMD University of Maryland

NPS Naval Postgraduate School

RDS Relational Database Schema

REST Representational State Transfer

RPC Remote Procedure Call

SOA Service-Oriented Architecture

SQL Structured Query Language

SRS Software Requirements Specification

SSD System Sequence Diagram

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAE Web Application Extension

 xviii

WS Web Service

WSDL Web Service Description Language

WWW World Wide Web

XML Extensive Markup Language

XSD Extensive Markup Language Schema Definition

 xix

ACKNOWLEDGMENTS

Thanks to my loving wife, Elsa. Without her unwavering support and patience, I

could not have accomplished this report. I am equally grateful to my kids, who have

stood by me and made adjustments to their lives in order to accommodate my mission

here at the Naval Postgraduate School.

I would also like to extend my sincere gratitude to professors Man-Tak Shing,

Bret Michael, and Craig Martell. Gentlemen, thank you for your guidance and sound

advice.

Finally, I would like to dedicate this report in memory of my friend and former

colleague, U.S. Air Force Maj. Ken Bourland. Ken, a graduate of the Naval Postgraduate

School, passed away in the Haiti earthquake of January 2010. Godspeed, my friend.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. THE PROBLEM

In December of 2008, the Intelligence Advanced Research Projects Activity

(IARPA) released a Broad Agency Announcement (BAA) soliciting proposals for the

Social-Cultural Content in Language (SCIL) Program. The intent behind the SCIL

program is to investigate methodologies, designs, and technologies that can contribute in

the understanding of the social goals of persons or groups of people by demonstrating a

relationship between these goals and their particular language use (IARPA, 2008). By

language use, we mean their “manner of speaking” as opposed to the language itself

(e.g., Spanish, French). Anyone contributing to SCIL would be required to use Natural

Language Processing techniques to provide information to Intelligence analysts so that

they could advise high-level decision makers. Insight into the social dynamics of a group

would allow analysts to better understand the strengths and weaknesses of a group, help

identify the group’s goals and motivation, and to reduce Anglo-centric assumptions about

their behavior (IARPA, 2008).

At a later date, the University of Maryland (UMD) responded to IARPA’s

solicitation with a plan for research in identifying social goals pertaining to persuasion.

UMD subsequently subcontracted University of California at Santa Cruz and the Naval

Postgraduate School (NPS) to work on the project. Each institution involved will serve as

a performer team that will interact and contribute to the program via an aggregate system

based on a service-oriented architecture (SOA). The information generated by each

performer team will be stored into a core knowledge repository for analysts to examine

for future events.

The issue that needs to be addressed involves the design and development of an

automated system that the Naval Postgraduate School (NPS) performer team will employ.

The design of a system will describe how the software is to be constructed and is based

on the requirements set forth by the users, in this case the stakeholders of the SCIL

program. It is critical that a careful examination of these requirements be conducted and

 2

validated by a UMD representative to subsequently provide our performer team with an

effective automated system to execute their component in this program. The system to be

developed must be capable of performing the following:

 Allow for local access for the collection, storage, and modification of the

data to be forwarded.

 Allow for remote access to the data.

 Allow for the transfer of data to the external knowledge repository over

the Internet.

B. THE SOLUTION

In order to address these system requirements, our research focuses on answering

the following three questions:

1. What are the requirements for system to be implemented by the NPS

performer team?

2. What is the appropriate design of a modular framework to effectively

manage the natural language assertions in a knowledge base repository

and the sharing of the knowledge via the World Wide Web?

3. What is the appropriate Web-service design to allow for multiple users to

update the knowledge base repository of natural language assertions from

multiple sites?

In this thesis, we addressed the first question by generating a software

requirements specification that makes use of various use cases that reinforce our

understanding of the system functionality. The specification was validated by a UMD

stakeholder. After a careful review of the system requirements, we used an object-

oriented analysis and design approach to address question number two. We developed a

preliminary design of the system as a whole using various Unified Modeling Language

(UML) notations. We also analyzed and developed a database schema required for the

 3

local storage. Lastly, we implemented a prototype system using a Web Service

Description Language file (WSDL) and an Extensive Markup Language Schema

Definition (XSD).

C. ORGANIZATION

 Chapter II—Background information on the concepts behind the SCIL

program, the Assertion Data, SOA, and Web Services.

 Chapter III—Requirements specification.

 Chapter IV—System design.

 Chapter V—Case study using a prototype of the performer team system.

 Chapter VI—Summary of the thesis and recommendations for future work.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A. SOCIAL CONTENT IN LANGUAGE

1. Introduction

As mentioned in the Introduction, the intent behind the SCIL program is to

employ appropriate theory and to develop practical technology in order to understand the

social goals of groups of interest. IARPA identifies three dimensions of the Program to

be of utmost importance: the social features and activities of the groups; the linguistic

features that serve as evidence of social goals; and the social science theories that help

define the social features (IARPA, 2008). The central medium of analysis is the human

language and how it serves as evidence of social activity.

The following three domains of knowledge are listed in the BAA as some

examples in which any organization submitting a proposal can research:

Social Constructs and Activities of the Group / Members

 Goals, such as power, solidarity, group supremacy, religious supremacy,

actions, manipulation strategies (e.g., persuasion, coercion, threats,

intimidation, oppression, abuse, and exhortation), and recruitment

Linguistic Features and Their Form, Meaning and Strength

 Sacred language

 Conversational patterns (e.g., turn-taking; conversational cues and

markers)

Social and Cultural Themes and Institutions

 Coercion

 Recruitment

 Loyalties (e.g., family, government, land, religion)

 6

The UMD team will analyze persuasion attempts to contribute to the overall

program. More specifically, the UMD performer teams will seek to provide information

to the analysts by using a multidisciplinary approach to analyze the language obtained

over an online textual-based communication system. Miller defined persuasion as “any

message that is intended to shape, reinforce, or change the responses of another, or

others” (Miller, 1980). Since the Internet has quickly developed into a primary tool of

communication, it has since served as an ideal means for individuals or groups of

individuals affiliated with terrorist organizations to express their beliefs and to initiate

persuasive dialog with the intent to either convince others to take some kind of action or

to accept some proposition or belief. There are many services and massive multi-person

online environments that facilitate online communication (e.g., Facebook, MySpace,

Twitter, World of Warcraft), providing a medium over which to influence and persuade

individuals in such a manner that would negatively affect our national security.

A key supporting idea in theories of persuasion deals with research in compliance

gaining. Compliance gaining involves a situation in which one person seeks to convince

another person to do something for him/her. Marwell and Schmitt identified 16

compliance-gaining strategies. Their paper on this subject is seminal because the majority

of research up to that point was concentrated on why people complied with persuasion,

instead of how they went about complying (Marwell & Schmitt, 1967). Another key

aspect of persuasion concerns framing effects, which are different from compliance

gaining in that they are related to the way in which language is used in persuasion as

opposed to the actual decision process used in persuasive arguments. Framing effects

focus on the intentional linguistic selection a person makes in order to solicit a certain

response or choice.

2. SCIL Architecture

For UMD to accomplish their work in the analysis of persuasion, they require a

multidisciplinary approach, which includes disciplines in linguistics, natural language

processing, and communications working together in order to form an assertion based on

raw data. The raw data will be communication text found online from various social

 7

forums. In the long run, the raw data will be processed at the lowest level into an

automated system that performs the natural language processing using artificial

intelligence to generate the assertions and subsequently forward the assertions to the

knowledge base. For UMD, the assertions will deal with persuasion events. Figure 1

depicts the SCIL program architecture as intended, which demonstrates UMD and other

notional performer teams. Intelligence analysts will execute queries to the knowledge

base for information about certain groups of interest without having to go through the raw

data. With the information at hand they, in turn, would advise higher level decision

makers.

Figure 1. SCIL architecture

Currently, the UMD team is in the prescheduled Base Period, which consists of

ongoing discussions about the content of an assertion, the definitions of language use,

and performing system prototype testing. During this testing period, the system that we

 8

will design will allow for local UMD researchers to manually store, manage, and forward

sample or real assertions into the repository. The next sub-section describes the current

agreed upon contents of an assertion.

3. Assertions

Assertions about groups of interest are what the analysts will query from the

knowledge base. An assertion is defined as a declaration about something with or without

facts. One can assert that the sky is green, or even that computers can talk, but without

any evidence or support those assertions are meaningless. For our purposes, we will

further define an assertion to be made up of the following three elements:

a. Claim

A claim is what the assertion is about. It contains a proposition about

social phenomena in conjunction with a qualifier that reflects inherent uncertainty. The

claim is based on and substantiated by language use. For example: “Phillip is a well-

established leader of the group.”

b. Evidence

The evidence serves as the basis from which the claim is derived.

Evidence is composed of sets of statements about social-linguistic features and/or social-

cultural phenomena exhibited by the core data. For example: “90% of the topic

discussions are initiated by John” or “Phillip is often referred to as sir.”

c. Support

Support is the rationale for asserting the claim based on the evidence.

Support is an explanation, contextualization, and framing of the claim via one or more

context statements. For example: “People who initiate discussions are typically leaders,”

or “Men that are referred to as ‘sir’ are well respected in their culture.”

While we do expect that the definitions and concepts behind the generated

assertions to evolve, our proposed system, along with the system tasked to perform the

 9

natural language processing, will serve as a component deployed in a service-oriented

architecture (SOA). The SOA architecture will utilize Web services communicating

between UMD teams and the SCIL program repository. Section B describes the

background of SOA and section C will provide information on Web services.

B. SERVICE-ORIENTED ARCHITECTURE

1. SOA Introduction

The purpose behind SOA is to allow for an enterprise to efficiently build

applications that provide a service or processes to users while overcoming distributed

computing challenges (Papazoglou & van den Heuvel, 2007). The impetus behind SOA

has been the limited and complex nature of an organization’s legacy IT architecture and

its inability to implement solutions in support evolving business goals. More so, it is the

lack of integration between an organization’s internal IT systems and their business

processes, business partners, and customers that is the driving force for change from the

current system architecture to one that is service-oriented (Marks & Bell, 2006).

SOA is a term that represents a model or a design in which automation logic,

which seeks to provide a solution to a given concern, is decomposed into smaller, self-

sufficient, and distinct units of logic each of which contribute to the completion of the

overall function (Erl, 2005). These decomposed units of logic, known as services, can

range in size and scope. SOA, in and of itself, is not a technology. The key behind the

SOA concept is that the services must be self sufficient. By avoiding inter-dependency,

each individual unit can evolve on its own (Erl, 2005). The basic method in which an

SOA looks to provide benefit is through the separation of concerns, decomposition if you

will, to allow for smaller entities to complete their respective functions in order solve the

overall concern.

The theory behind the separation of concerns, which Dijkstra references in his

manuscript EWD 447: On the role of scientific thought, claims that there are benefits in

decomposing a large problem into a set of smaller individual concerns where each

 10

individual concern is addressed by a unit of logic (Dijkstra, 1982, pp.60–66). Object-

oriented programming, as an example, implements this concept with its use of objects,

classes and components.

Ideally, the services in a SOA should not only be aware of other services but be

able to communicate with them. The services utilize what is called a service description

to identify, locate, and manage the communication between services. The communication

between the services takes place via a framework called messaging. Each message while

underway from service to service is also self-sufficient and not dependent on anything

but itself (Erl, 2005).

So far, what has been described is the basic architecture of what SOA is about.

Figure 2 provides a visual representation of the basic architecture thus far.

Figure 2. SOA architecture

Erl provides us with a simple analogy of the concept behind SOA, comparing it to

a business community. Every city has some business community that consists of entities

ranging in size from a Wal-Mart to a local mom and pop store. These businesses provide

services to us as consumers, similar to how the units of logic (services) from a system

perform a function and, if you take the business community as a whole, it seeks to solve a

particular demand, much like how the automation logic provides a solution for an overall

concern. The services still have certain established regulations that must be followed. In

SOA, these regulations are the principles that drive service-orientation (Erl, 2005).

Continuing with the business community analogy, the analogous regulations in place

 11

could consist of a common currency that must be used for a transaction or even a

common language that must be spoken. The services follow a set of common service-

orientation principles through a process.

2. Principles of SOA

The following are commonly accepted principles of service-orientation as

described by Thomas Erl:

a. Services Are Reusable

 Reusability benefits by reducing the need for future development efforts.

An analogy would be similar to how the Department of Motor Vehicles (DMV) services

all requestors for a driver’s license, but an even more reusable service would be a DMV

that distributed licenses to users of all types of vehicles (ground, rail, aviation, boat, etc.).

b. Services Share a Formal Contract

Similar in concept to how a consumer would need to fill out an application

for the vehicle license mentioned above, the contract defines the service, the

operations/activities, and the messaging that are required to consume the service.

c. Services Are Loosely Coupled

Loose coupling facilitates agility. The factors that influence change in an

IT environment are external, and so it is important that the underlying logic behind the

individual services be independent. After we have waited in line, filled out our

application, and taken the test at the DMV, the responsibility is on the DMV to process

and provide us with the license.

d. Services Abstract Away Underlying Logic

The details (underlying logic) that make the service work are hidden, and

of no concern to the user as long as the service works. Not many people know or care

exactly what the DMV does in order to process their request for a license.

 12

e. Services Are Composable

Composable means that services can have subservices. A service-oriented

process is one that has a parent process in which it calls its underlying services to perform

a subfunction. This principle reinforces reusability. The local law enforcement agency

would require the use of the new DMV to license their drivers as well.

f. Services Are Autonomous

Autonomy allows for self-governance of all its processing, which

subsequently allows for a service that is free from any dependencies that would restrain

its deployment and evolution (Erl, 2005). Let us assume that the new DMV requires a

background check on people applying for a license. The DMV normally delegates that

task to another agency, and is dependent on their results. If the DMV were to perform its

own background check, this independence would allow for the DMV to evolve its

services without being held back by a dependent functionality.

g. Services Are Stateless

If a service is tied up by managing information, it reduces its own ability

to receive other requests from other requestors. A stateless service promotes reusability

and scalability by forwarding the message received and forgetting that it ever had the

message, let alone what it was about. A services state is dependent on how well-designed

the indiviual operations are, and how they function. The self-sufficient messages

mentioned previously support statelessness. After completing the processing for an

applicant’s license, the details behind the application are saved in a database and there is

no reason for the DMV to linger on your request. By doing so, it would inhibit the ability

to service other applicants.

 13

h. Services Are Discoverable

Discoverability prevents redundancy in service development. A discovery

mechanism should be in place that enables potential clients who need your service to

locate and consume it. The DMV information (location, phone number, etc.) can be

found in the yellow pages, the Internet, or even signage on the highway, which is how we

know to go there to begin with.

3. Benefits of Using SOA

We have vaguely touched on the benefits of using a SOA for any particular

organization. Not all organizations require a change or, specifically, a shift in

architecture, but for those organizations that are finding it costly to make changes to their

current IT structure in response to a dynamic business environment, an SOA solution

may be worth exploring. SOA provides developers with a means to overcome many

distributed enterprise computing challenges, such as application integration, transaction

management, and security policy enforcement, while allowing the concurrent use of

multiple platforms and protocols and leveraging numerous access devices and legacy

systems (Alonso et al., 2004).

Depending on how it is used, the benefits of SOA relate to the aforementioned

principles and include the following: the costs of integrating your applications will be

reduced, your returns on investment will increase due to the reusability principle, a

reduced processing overhead and reduced skill-set requirements are experienced due to

the services being composable, the need to replace legacy systems is reduced, which in

turn saves money, the use of a standardized language like Extensive Markup Language

(XML) reduces the cost and efforts of application development, and the costs involved in

responding to changes via external sources are also reduced (Erl, 2005).

 14

C. WEB SERVICES

A Web Service (WS) is defined by the World Wide Web Consortium (W3C) as:

A software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards. (W3C, 2004)

Basically, a WS is a method of implementing a distributed system, which allows for

objects on one computer to interact with those of another computer over the Internet.

There are currently two prominent models used for creating Web Services: the

Representational State Transfer (REST) model and the SOAP-based model.

1. RESTful Web Services

RESTful WS allow for access to resources on a network referenced via a Uniform

Resource Locator (URL). REST uses HTTP as the primary transportation protocol to

support the execution of one of the four methods: GET, PUT, DELETE, and POST.

REST services have limited support, in that REST has no standardization, few toolkits,

and little by means of software library support. Message exchange can be performed in

various formats (e.g., XML, HTML). Figure 3 shows an example request and associated

response for a RESTful service.

Figure 3. REST Web service request / response (From Spies, 2008)

 15

2. SOAP-Based Web Services

SOAP is the accepted standard method of communication between computers

over the Internet that specifically uses XML to represent the information passed. SOAP is

supported with toolkits and various software libraries. The earliest version of SOAP,

version 1.1, was adopted by the W3C after its submittal in May of 2000. SOAP, which

once stood for Simple Object Access Protocol, is currently in version 1.2 and is based on

messages taking the form of documents. The encoding behind the request and response

operations of SOAP WS is in XML format and the network transportation protocol can

be by any means (e.g., IBM MQSeries, MSMQ, or SMTP) but the most common

protocol is HTTP. For this research, we will focus on SOAP-based Web Services. Figure

4 shows an example request and associated response for a SOAP-based service.

Figure 4. SOAP Web service request / response (From Spies, 2008)

3. Web Service Components

As mentioned previously, SOA consists of units of logic known as services that

require a means either to locate other services or to advertise services. SOA also supports

a means of communication that would enable interaction between services. In this

section, we will elaborate more on each component that makes up a WS.

 16

a. Services

A WS can be classified as being temporary or permanent, depending on

the function that it assumes during runtime or its application logic. The basic service

roles a service plays are that of a provider, intermediary, and a requestor (Erl, 2005). In

the requestor role, the service will initiate the transmission of a message requesting a

particular service of which the provider was designed to execute. The provider will

execute the request and respond to the requestor. As an intermediary, the service will

process a message, performing its own functionality, and forward the request to its

service provider. Some functions an intermediary service can perform are authentication

services, auditing services, and management services (Irani, 2010).

Services based on the nature of the application logic in which the service

is intended to perform are classified as service models. For example, a service can be of a

Business type (e.g., Accounts Payable Service) that executes one of many operations

required by an organization, a Utility type (e.g., Internal Policy Service) that is

completely reusable and non-application specific, or a Controller type that would be

responsible for the coordinated functionality of all of the services within an organization

(Erl, 2005).

b. Description

In order for services to interact, they first need to be aware of each other.

Specifically, a provider needs a formal description of its services. The description acts as

a contract with clients who request the provider’s service. A W3C standardized WSDL

document serves this purpose. WSDL is defined as:

An XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-
oriented information. The operations and messages are described
abstractly, and then bound to a concrete network protocol and message
format to define an endpoint. (W3C, 2001)

 17

The WSDL file is also written in XML and describes the data that will be

passed and the method that passes it regardless of the programming language used. This

means that a service written in Python can be consumed by client created in Java.

Although a WSDL is subdivided into several sections, it is generally

composed of two key components: an abstract interface description (i.e., operations,

operation parameters, and abstract data types) and a concrete implementation description

(i.e., a network address, a protocol, and concrete data structures; Zimmermann,

Tomlinson, & Peuser, 2003), the latter of which provides the means to actually invoke

the service. Let us briefly look at the main elements found in a standard .wsdl file. The

text and sub-tags within a .wsdl file are encapsulated inside of a <definitions> element

and from top to bottom the five main elements within are: <types>, <messages>,

<portTypes>, <binding>, and the <service>.

 <types>—This element includes the abstract information set using an

XML Schema that defines the data types used in the communication

process between the service provider and the requestor. If there are an

excessive number of data types described, the schema can be imported

into this section as a separate document.

 <messages>—The message element defines the abstract content of the

messages to be communicated. The content includes the name of the

message part (what the message is called), the element attribute that refers

to the XML schema (what the message is), and the type (the type of data it

holds).

 <portTypes>—The port type element identifies and describes a specific

service interface. It is a named-set of abstract operations and their abstract

messages that come in two varieties, input and output. The operations are

made up of the messages described in the messages element.

 <binding>—The purpose of the binding element is to connect the abstract

port type description to a concrete service implementation. The protocol

details to send the messages are defined here.

 18

 <service>—The service element, which is also known as the endpoint,

specifies where and how to send the information. The service element

works with the binding element by connecting a port type to a particular

port defined within the service element.

Figures 5 and 6 are excerpts from two WSDL documents entitled

stepGovServices_12.wsdl and stepPortTypes_12.wsdl (Tong, 2009). These files are

referenced again in Chapter IV.

Figure 5. WSDL, abstract interface description

 19

Figure 6. WSDL, concrete implementation description

c. XML Schema (XSD)

An XSD is a model document that defines the structure of a separate XML

document. The XML document will contain a reference to the XSD that defines its

structure. much like how the schema is imported to support the WSDL document in

Figure 5. The schema’s syntax is entirely in XML, and it serves to validate the XML

document’s adherence to the schema’s structure. An XSD can contain several subordinate

element types, similar to a WSDL, and tends to be very complex. However, some of the

basic elements that you will find in an XSD are: <elements>, <attributes>,

<simpleType>, and <complexType>; all of which serve to define the text data as strings,

integers, dateTime, or data types. Figures 7 and 8 are excerpts from an XSD named

stepSchema_12.xsd (Tong, 2009).

 20

Figure 7. XSD I

 21

Figure 8. XSD II

d. Messaging

The communication protocol shared between services is the standard

HTTP application layer used by clients and servers over the Internet. However, since the

communication between services is message-based, the framework used should be

standardized, flexible, and highly extensible (Erl, 2005). The SOAP messaging

framework meets these requirements. A SOAP message contains the following elements:

<Envelope>, <Header>, and <Body>.

 <Envelope>—The header is a mandatory element that acts as a container

for the header and body elements. This element defines itself (an XML

document) as a SOAP message.

 22

 <Header>—The header element is optional and provides a means to pass

any kind of additional processing or control information to recipients of

the message.

 <Body>—The body is mandatory in that it holds the actual SOAP

message intended for the service provider.

Figure 9 demonstrates a basic example of a client service requesting a

connection identification number by sending a SOAP message containing a user name

and password. The service provider responds to the requestor with the connection

number.

Figure 9. SOAP message

 23

D. SUMMARY

This chapter began with an overview of the SCIL program intended to identify the

social goals of a group of interest and its members by analyzing language features. UMD

has proposed a research supporting the program that involves addressing the social

phenomenon of persuasion. UMD will conduct a multidisciplinary approach to analyze

the language and its use to determine if the intent to persuade is present. In order to make

this happen, online text dialogue needs to be collected and analyzed to create assertions

identifying persuasion attempts. These assertions must be processed by a system capable

of performing the following: collect, modify, and locally store the data, allow for remote

access to the data, and allow for the transfer of data to the external knowledge base

repository over the Internet. We also covered some of the background on SOA and its

benefits and we finished the chapter with a discussion on Web Services along with their

common protocols (i.e., WSDL, XSD, SOAP). In Chapter III, we will address the key

features and requirements necessary for the development of our proposed system.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

III. SYSTEM REQUIREMENTS SPECIFICATION (SRS)

A. OVERVIEW

A software requirement is defined as a “software capability that must be met or

possessed by a system or system component to satisfy a contract, standard, specification,

or other formally imposed documentation” (Leffingwell & Widrig, 2003). The

methodology used to derive the following requirements for our proposed system were

based on a face to face interview with a SCIL representative and an agreed upon set of

use cases to describe the general system functionality.

1. Purpose

The purpose for this SRS is to determine the functional and nonfunctional

requirements necessary to effectively store, process, and transfer assertion data generated

by the local UMD performer team in support of the SCIL program.

2. System Perspective

This software is a new and self-contained product that is a separate component of

a larger system design that includes other performer clients and services from various

learning institutions and a central application server that provides a WS endpoint. Other

performer systems will interact with the application server in the same way.

3. System Features and Domain Model

The major features of this system include two Web services: one that will display

a local service status when queried by an external client; and another that will allow for

an external client to retrieve assertion data, a WS client that will be capable of updating

the external knowledge base, a software application that will be used to manage the

assertion data and services, and a database used to store the data. All of the

aforementioned features and interfaces will be written in or interact with the JAVA

programming language.

 26

Figure 10 is a domain model, which displays a visual perspective of the concepts

relative to the proposed system. The local users will use the system to create assertions to

be stored locally. The assertion text is composed of a claim, evidence, and support data.

The assertion text combined with a local system-generated assertion ID (local ID), and

IARPA’s external system-generated assertion ID (external ID), and a date and time group

(DTG) form a knowledge base assertion that is stored locally.

Our system will deploy two Web services: ExplanationGetWS and

StatusReportWS. The ExplanationGetWS will allow for clients to retrieve assertion data

from the local system. Our system will also execute one WS client: KbUpdate client.

KbUpdate client will interact with the external system’s WS to transfer, replace, or delete

assertion data. Our KbUpdate client and ExplanationGetWS will have a status associated

with them that will be returned in response to queries to the StatusReportWS. The core

operations will be explained in more detail in Chapter IV. Both Web services will be

deployed on an application server that will allow for their consumption by the external

system. The domain model also depicts a DataPush client. The purpose behind the

DataPush client has not been agreed on by the UMD stakeholders at this time; therefore,

aside from its place in the domain model, this research will not include the DataPush

functionality.

 27

Figure 10. Domain model

4. Intended Audience

This SRS is intended to be read by the local users and project managers who

represent the UMD team in support of SCIL.

B. FUNCTIONAL REQUIREMENTS

This section begins the description of the system features utilizing several use

cases that serve as functional requirements. The use cases are scenario-driven, meant to

provide us with both an outside-in view of the system functionality, and a critical tool in

the analysis process. Figure 11 is a use-case diagram, which introduces the system actors

 28

and their respective interactions with the system. The elements listed under UMD System

represent the individual use cases, and will be explained in more detail. As a reminder,

the local users will be replaced by an automated system that creates the assertion from the

input of raw data in the future.

Following each use case, we have provided a system sequence diagram (SSD). An

SSD is “a picture that shows, for one particular scenario of a use case, the events that

external actors generate, their order and inter-system events” (Larman, 2005). The point

behind the SSD is to identify the particular events that will transpire during execution

giving us a clearer picture of the system behavior.

Figure 11. Use case diagram

 29

1. Local User Stores Assertion

Table 1. Local user stores assertion

Primary actor Local user

Stakeholders and

interest

 Local user wants to store the assertion in to the local

database.

 External user needs the assertion to be accessible.

Entry conditions The local user workstation needs to be operational.

 The local user has already logged in.

 The local user can access the assertion text via the

local workstation.

Exit conditions The assertion has been assigned an external ID.

 The assertion is stored within the local database.

Main scenario 1. The system displays a menu option, which includes the

option to store the assertion.

2. Local user selects the option to store assertion.

3. The system displays an interface that allows for the

manual entry of the data along with the option to store

the assertion.

4. Local user manually enters the assertion data into

provided text fields.

5. The local user selects the option to store.

6. The system generates an local ID for the assertion.

7. The system generates the DTG for this instance.

8. The system stores the assertion, respective DTG, and

local ID into the local database.

9. The system displays the local ID to the user along

with a message stating that the operation is complete.

 The User repeats steps 2–9 until complete

 30

10. The local user logs off of the workstation.

Extensions *a. Workstation System failure:

1. The local user restarts the system and logs in.

2. The system assumes its state prior to step 1 in the

main scenario.

3. The local user re-attempts the storing process

4a. Invalid input:

1. The system displays an “invalid input error” message

stating that the data entered was incorrect.

2. The system returns to the state at step 3 in the main

scenario.

Figure 12. Store assertion SSD

 31

2. Local User Transfers Assertion to Knowledge Base

Table 2. Local user transfers assertion to knowledge base

Primary actor Local user

Stakeholders and

interest

 Local user wants to transfer an assertion from the local

database to the external system/database.

 External system stores the assertions

Entry conditions The assertion data has been previously stored within

the local database.

 The assertion data is assigned a local ID.

 The local and external systems are operational.

 The local user is logged in the system and is on the

main menu.

Exit conditions The assertion has been successfully transferred from

the local database to the external database.

 An external ID is returned to the local user and stored

in the local database.

Main scenario 1. The system displays a menu option, which includes the

option to transfer assertion data.

2. The local user selects the option to transfer an assertion.

3. The system displays an interface that allows the user to

select the assertion(s) that will be transferred

4. The local user selects the assertion(s) and then selects

submit.

5. The system initiates a query to the local database for

the assertion data using the local ID as reference.

6. The system makes a copy of the assertion data.

7. The system executes the KbUpdate client system by

sending the copied data over the internet to the

 32

external system.

8. The external system redirects the data to the external

knowledge base for storage.

9. The external system returns an assertion external ID(s)

to the sender.

10. The local system receives and displays the external

ID(s) to the local user.

11. The system stores the external ID in the local database.

12. The system returns the local user back to the main

menu.

 The User repeats steps 2-12 until complete.

13. The local user logs off.

Extensions 4a. Invalid identification number:

1. The system displays an error message stating that the

identification number entered was mal-formed or

non-existent.

2. The system returns to the state at step 3 in the main

scenario

7a. Network failure before the assertion reaches the

external database:

1. The local system displays an error message stating

that a connection was not completed.

2. The system returns to the state at step 6 in the main

scenario prior to the transfer attempt.

9a. Network failure after the transfer and before the

return of the external ID.

1. The system displays an error message stating the

network condition.

2. The system returns to the state at step 6 in the main

scenario prior to the transfer attempt.

 33

Figure 13. User transfers assertion SSD

3. Local User Replaces Assertion in the External System

Table 3. Local user replaces assertion

Primary actor Local user

Stakeholders and

interest:

 Local user wants to replace an existing assertion in the

external database with one from the local database.

 External System stores assertions.

Entry

conditions:

 The assertion data has been previously stored within

the local database.

 34

 The assertion data is assigned a local ID.

 The assertion to be replaced has been assigned an

external ID and that ID has been stored in the local

database.

 The local and external systems are operational.

 The local user is logged in the system and is on the

main menu.

Exit conditions: The old assertion has been successfully replaced by the

new assertion.

 An external ID is returned to the local user and stored

in the local database.

Main scenario: 1. The system displays a menu option, which includes the

option to replace an existing assertion in the external

database.

2. The local user selects the option to replace an

assertion.

3. The system displays an interface that allows the user to

select the assertion that will replace the assertion in the

external database.

4. The local user selects the assertion.

5. The system displays an interface that allows the user to

select the assertion that will be replaced.

6. The user selects submit.

7. The system initiates a query to the local database for

the assertion data using the local ID as reference.

8. The system makes a copy of the assertion data.

9. The system executes the KbUpdate client by sending

the copied data and the external ID of the assertion to

be replaced over the internet to the external system.

10. The external system redirects the data to the external

 35

database and replaces the assertion referenced by the

external ID storage with the new assertion.

11. The external system returns a new assertion external

ID assigned to that assertion to the local system.

12. The local system receives and displays the external ID

and a message to the local user indicating the

operation is complete.

13. The system stores the new external ID in the local

database.

14. The system returns the local user back to the main

menu.

 The User repeats steps 2-14 until complete.

15. The local user logs off.

Extensions 4a. Invalid identification number:

1. The system displays an error message stating that the

identification number entered was mal-formed or

non-existent.

2. The system returns to the state at step 3 in the main

scenario.

9a. Network failure before the transfer takes place:

1. The local system displays an error message stating

that a connection was not completed.

2. The system returns to the state at step 6 in the main

scenario prior to the transfer attempt.

11a. Network failure after the transfer and before the

return of the new identification number:

1. The system displays an error message stating the

network condition.

2. The system returns to the state at step 6 in the main

scenario prior to the transfer attempt.

 36

Figure 14. User replaces assertion SSD

4. Local User Edits Assertion in Local Databas

Table 4. Local user edits assertione

Primary actor Local user

Stakeholders and

interest:

 Local user wants to ensure that the data stored in the

local database is updated correctly.

Entry

conditions:

 The assertion data has been previously stored within

the local database.

 The assertion data is assigned a unique identification

 37

number.

 The local system is operational.

 The local user is logged in to the work station.

Exit conditions: The data within the local database has been updated

successfully.

Main scenario: 1. The system displays a menu option, which includes the

option to edit a locally stored assertion.

2. The local user selects the option to edit assertion.

3. The system displays a prompt for the user to enter an

assertion local ID.

4. The local user enters the local ID.

5. The system retrieves a copy of the assertion data

displayed in an interface containing text fields that are

populated with the current data and are capable of

being changed.

6. Local user edits the data through the interface and

selects the option to save.

7. The system reassigns the original assertion local ID to

this instance.

8. The system generates a new DTG for this instance.

9. The system inserts the new data, DTG, and the

reassigned local ID into the local database.

10. The system displays to the user the local ID and a

message stating that the update is complete.

 The user repeats steps 2-10 until complete.

11. The local user logs off the workstation.

Extensions 4a. Invalid identification number:

1. The system displays an error message stating that the

identification number entered was mal-formed or

non-existent.

 38

2. The system returns to the state at step 3 in the main

scenario.

6a. Invalid input:

1. The system displays an “invalid input error” message

stating that the data entered was incorrect.

2. The system returns to the state at step 5 in the main

scenario with the original assertion data remains

unchanged.

Figure 15. Local user edits assertion SSD

 39

5. External User Queries ExplanationGetWS

Table 5. External user queries ExplanationGetWS

Primary actor External user

Stakeholders and

interest:

 The external user needs information from the local

database.

 The local database has the assertion that is being

requested.

Entry

conditions:

 The assertion has been previously stored in the

external database.

 The assertion is currently stored in the local database.

 The assertion has been assigned an external ID.

 The local service is operational.

 The external user has already provided his/her

appropriate authentication and has logged in to the

external system.

Exit conditions: The assertion has been successfully retrieved from the

local system by the external user.

Main scenario: 1. The external user (client) submits a request for

assertion data.

2. The ExplanationGetWS receives the request, which

includes the external ID of the assertion to be

retrieved.

3. Using the external ID as a reference, the local service

selects the respective data from the local database.

4. The data is returned to the external user via the

internet.

5. The local service returns to the state before the initial

query.

 40

 The external user repeats steps 1-5 until complete.

Extensions 1a. Network connection not available:

1. If the network connection is inoperable the external

user is presented with an error.

1b. Invalid identification number:

1. The service interface displays an error message

stating that the identification number entered was

mal-formed or non-existent.

2. The service interface returns to step #1 in the main

scenario.

Figure 16. External user queries ExplanationGetWS SSD

 41

6. External User Queries StatusReportWS

Table 6. External user queries StatusReportWS

Primary actor External user

Stakeholders and

interest:

 The external user wants to verify the status of the local

system capabilities.

Entry

conditions:

 StatusReportWS is operational.

 The local capabilities have been assigned a status.

 The external user provided the appropriate

authentication.

Exit conditions: The external user successfully receives the statuses.

Main scenario: 1. The external user, acting as the client, submits a

request to StatusReportWS.

2. The local service receives the request from the external

user.

3. The local service retrieves the operational status.

4. The operations status is returned to the external user

via the internet.

5. The local system returns to the state prior to the initial

query.

 The external user repeats steps 1-5 until complete.

Extensions 4a. Invalid identification number:

1. The system displays an error message stating that the

identification number entered was mal-formed or

non-existent.

1a. Network connection not available:

1. The external user is presented with a connection error.

 42

Figure 17. External user queries StatusReportWS SSD

7 Administrator Sets the Capability Status

Table 7. Administrator sets capability statuses

Primary actor Administrator

Stakeholders and

interest:

 The administrator wants to ensure the appropriate

status is set.

 The external user wants to occasionally verify the

status of the local system capabilities.

Entry

conditions:

 The local service is operational.

 The administrator has already provided proper

authentication and is logged in.

Exit conditions: The administrator successfully sets the capability

status.

 The administrator receives confirmation of the status

update.

Main scenario: 1. The system displays a menu option that includes the

 43

option to set the status of the system capabilities.

2. The administrator selects the option to set the status.

3. The system displays an user interface to set the

appropriate status.

4. The administrator sets the status and selects to the

option to save.

5. The system updates the local database with the

changes to the statuses.

6. StatusReportWS is redeployed to the application

server reflecting the new statuses.

7. The system returns a message to the administrator

confirming the status settings.

8. The local system returns to the state at step 1 in the

main scenario.

 The administrator repeats steps 1-8 (if necessary)

Extensions 1a. Connection to the database is not available:

1. The system displays a database connection error.

2. The system returns to the state prior to step 1.

 44

Figure 18. Administrator sets statuses SSD

8. Administrator Modifies a User Account

Table 8. Administrator modifies a user account

Primary actor Administrator

Stakeholders and

interest:

 A local user needs an account to execute the system

operations.

 The Administrator can create, delete, or edit a user

account.

Entry

conditions:

 The local system is operational.

 For account creation, the new user must not have an

existing account.

 For account deletion or editing, the user must have

existing account.

 The Administrator is already logged on to the system.

 45

Exit conditions: A user account is either successfully created, changed,

or deleted.

Main scenario: 1. The system displays a main menu interface that

includes the option to modify user accounts.

2. The administrator selects the option to modify user

accounts.

3. The system re-prompts the system administrator for a

password.

4. The administrator enters the password.

5. The system displays an option to either create a new

user account or edit a user account.

6. The administrator selects the option to create a new

user account.

7. The system displays an interface prompting for the

new user’s name, account username, and account

password.

8. The administrator enters the new username and

password.

9. The administrator selects the option to save the new

account creation.

10. The system processes the request.

11. The system returns a message stating that the account

has been successfully created.

12. The system returns to the state described in step 5.

 The system administrator repeats steps 5-12 until

complete.

13. The system administrator returns to the main menu and

logs off.

Extensions 4a. Incorrect Password:

1. The system re-prompts for the system administrator’s

 46

password.

6a. Administrator wants to edit a user account:

1. The administrator selects the option to edit a user

account.

2. The system displays a list of users that are selectable

and the option to edit or delete the selected account.

3. The administrator selects the user and chooses the

option to edit.

4. The system displays an interface with text fields

populated with the users account information and

capable of being manipulated.

5. The administrator makes the changes to the user

account and selects the option to save. (Continue

with step #10 in the main scenario).

6b. Administrator wants to delete a user account.

1. Steps 1 and 2 from 6a are performed.

2. The administrator selects the user(s) and chooses the

option to delete.

3. The system prompts the administrator for

confirmation on the delete operation.

4. The administrator confirms the operation. (Continue

with step #10 on the main scenario).

Figure 19 displays the SSD for the case in which the administrator modifies a

user’s personal account. Figure 20 extends from Figure 19 displaying the administrator’s

choice of delete and edit. Both continue after the administrator selects the option(s) as

depicted within the red box.

 47

Figure 19. Modify user account (create) SSD

 48

Figure 20. Modify user account (edit & delete) SSD

C. OTHER FUNCTIONAL REQUIREMENTS

The requirements listed in this section are those that were not specified in the use

cases described in Subsection B.

1. System Access

1.1 A local user is required to have an account in order to use the system.

 49

1.2 The user account will include a username and password.

1.3 Usernames will be the user’s school email address.

1.4 Users will not be able to change their passwords.

1.5 User passwords will be up to 15 characters in length.

1.6 User passwords can contain any ASCII character.

1.7 User passwords will be case sensitive.

1.8 The ability to manage the local user accounts will be restricted to the system

administrator.

1.9 The system administrator will have the ability to grant or remove system

privileges to users, change user passwords, change the system status, and to

modify new user accounts.

2. Database

2.1 The Database Management System (DBMS) will use a server database type.

2.2 The DBMS will support a relational model.

2.3 The DBMS will utilize a Structured Query Language (SQL) engine.

2.4 The DBMS will utilize an interface driver (e.g., JDBC, ODBC).

2.5 The DBMS should be able to run on a Windows, Macintosh, or Linux

operating system.

2.6 The DBMS should have a minimum database size of 4 Gigabytes.

2.7 The DBMS should be capable of executing, at minimum, the following Data

Types: integers, decimal, strings, and date & time.

2.8 The primary key will be used as the local database assertion identification.

2.9 The DBMS will need to allow for more than one row of data per assertion.

2.10 Any changes or service requests made to the local database must be logged

and subsequently be capable of being queried.

 50

3. Local System Functionality

3.1 When creating and subsequently storing an assertion, the user will also have

the option to either Store and Replace or Store and Transfer.

3.1.1 The Store and Replace function will store the assertion in the local

database and replace an assertion that currently exists in the external

database.

3.1.1.1 When a Store and Replace function is executed the local

copy of the assertion that is replaced in the external database will

remain in the local database with a note replacing the respective

external ID stating a replacement has occurred.

3.1.2 The Store and Transfer function will store the assertion in the local

database and forward the assertion to the external database.

3.2 When editing an assertion, the user will have the option to either 'edit' an

existing assertion or 'delete' an existing assertion.

3.3 When editing an assertion, the user will be shown an interface that displays

selectable assertions with fields that show the assertions have a local ID and / or

an external ID.

3.3.1 When the function to 'edit' is selected and both an local ID and

external ID exist, the selected assertion will be changed in the local

database and the copy that exists in the external database will be replaced

by the new version.

3.3.2 When the function to 'edit' is selected and only a local ID exists for

the assertion then the selected assertion will be changed in the local

database only.

3.3.3 When the function to 'delete' is selected and only a local ID exists

for the selected assertion, the assertion will be removed from the local

database.

 51

3.3.4 When the function to 'delete' is selected and both an local ID and

external ID exist, the user will be given an option to either delete the

selected assertion from only the external database or from both databases.

3.3.4.1 If the user selects to delete an assertion from the external

database only, the local copy of the assertion that is removed from

the external database will remain in the local database with a note

replacing the respective external ID stating a deletion has occurred.

4. Services and Clients

4.1 The core capabilities of the system are named: KbUpdate, ExplanationGetWS,

DataPush, and StatusReportWS.

4.2 KbUpdate will be a client application that will allow for the transfer,

replacement, or deletion of assertion data to the external system.

 4.2.1 The local ID generated for the assertions stored in the local database

will be different from the external ID generated in response to a KbUpdate

operation.

 4.2.2 An assertion can only be successfully transferred once in order to

avoid overwriting the external ID that was originally returned. This does

not include replacements.

4.2.3 Feedback will be returned in the form of a message to the user either

during or following the completion of an operation.

4.3 ExplanationGetWS will be a local port type WS that will allow for an external

user to request assertion data from the local database.

 4.3.1 For the external user to request assertion data from the local

database, the external ID needs to be received.

 4.3.2 ExplanationGetWS will be deployed on the local application Server.

4.4 DataPush will be a client application that is currently undefined.

 52

4.5 StatusReportWS will be a local port type WS that will allow for an external

user to request the status of the local system main capabilities.

 4.5.1 The status returned to the external user consists of a status message

and a DTG for the time when the operation was last performed.

 4.5.2 A status will be assigned to each of the three key capabilities:

DataPush, ExplanationGet, and KbUpdate.

 4.5.3 The Web service status message can be a choice between being

'Available,' ‘Unavailable,’ or 'Unsupported.'

 4.5.4 StatusReportWS will be deployed on the local application server.

5. User Interface (UI)

5.1 The UI will be a Web application based on a local client / server system that

consists of web pages a user can access with a Web browser to execute the main

system operations.

5.2 The use of the UI will be restricted to the local users.

5.3 The UI will consist of a sign-in page and a main menu page with connecting

Web pages to facilitate executing five main operations: storing assertions,

transferring assertions, editing assertions, setting the capability statuses, and

managing user accounts.

5.3.1 The sign-in page will provide text fields to enter user sign-in data

and a means to cancel the operation.

5.3.2 The main menu will allow the user to navigate to all five main

operations described in 3.2.

5.3.3 The main menu will provide the user the means to log out of the

system.

 53

5.3.4 The main menu will display a list of the 10 most recently executed

activities associated with core system capabilities along with their

respective DTG.

 5.3.5 The main menu will allow the user to check executed activities that

are not among the 10 most recent.

 5.3.6 The main menu will display the current capability statuses.

5.3.7 The Transfer Assertion and Edit Assertion pages will provide a

browsing capability for the user to look up and select assertions.

5.3.8 The functions under the Store Assertion, Transfer Assertion, and

Edit Assertion Web pages that either send assertion data to the external

database, replace an existing assertion in the external database, or delete

an existing assertion from the external database will execute the KbUpdate

client.

6. Application Server

6.1 The application server must be JAVA Enterprise Edition compliant.

6.2 The application server must provide a runtime for Web-based applications.

6.3 The application server must allow for the deployment of Java Server Pages

and Servlets.

D. NONFUNCTIONAL REQUIREMENTS

These requirements express specific nonfunctional attributes of the system’s

environment.

1. Usability

1.1 The intended user is one which should be comfortable with the basic

functionality of a Web browser, which will allow for the manipulation of an

assertion.

 54

1.2 The software must be consistent with standard Web browser-based

applications.

2. Reliability

2.1 The system services must be consistently available 24 hours a day during the

project period.

2.2 Mean time to repair will be less than 1 hour.

2.2 Upon a system crash and recovery the database data must be safe and

represent what it had prior to the crash.

3. Portability

3.1 The software must be portable, meaning that the program must be capable of

being executed from a Java Archive file (.jar) and / or a Web application archive

file (.war).

 3.1.1 The portable executable files must be compatible with the Glassfish

version 3 Application Server.

4. Supportability

4.1 The software must be capable of accommodating updates to the XSD, WSDL,

or general changes.

4.2 The program code must be well commented to allow for future analysis and

modification.

4.3 The program code must be well commented modular code to support testing

procedures.

 55

E. SUMMARY

In this chapter, we provided an SRS for our proposed distributed system. The SRS

utilized use cases to demonstrate the functional requirements and those specific

requirements not mentioned in the use cases were explained in sub-section C. The

sequence diagrams were created to demonstrate the interaction of the processes which

would be needed to execute the core operations and also the order in which they would

perform. We used these requirements to help us design the proposed system that is

covered in Chapter IV.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

IV. SYSTEM DESIGN

This chapter presents a design of the proposed distributed system based on the

requirements defined in Chapter III. We have broken down the system into four main

tiers to be developed as depicted in Figure 21. The four tiers represents the fundamental

architecture that our client application and service will use for deployment.

Figure 21. Four tiers of development

A. DATABASE TIER

Based on the stakeholder’s requirement of a relational database mentioned in

Chapter III, our first step was to build a conceptual data model (CDM) of the underlying

database schema. A CDM is high-level visual representation that uses concepts such as

entities, attributes, and relationships to describe a database application (Elmasri &

 58

Navathe, 2007). Specifically, we will use an entity-relationship (ER) diagram, which is a

popular type of CDM, to represent our database. To avoid redundancy while ensuring

scalability, we normalized our database by using an algorithm that performs several steps

to map an ER diagram into a Relational Database Schema (RDS) (Elmasri & Navathe,

2007). Figure 22 shows our ER diagram. To clarify what our ER diagram depicts, we will

briefly discuss what the aforementioned concepts found in CDMs mean.

 Entities represent a thing (conceptual or physical) in the real world that

exists independently. In our diagram entities are depicted as the green

rectangular boxes. Entities that have an additional outline around the

rectangle are called weak entities, which means that they do not have a key

attribute and are related to a specific entity called the owner entity

(Elmasri & Navathe, 2007).

 Attributes are specific properties of an entity. Attributes that are

underlined are considered to be key attributes, which means that they are

unique in value. Attributes are depicted as yellow circles. Multi-valued

attributes are depicted with a double circle and represent data that can be

greater than one set. Composite attributes are those that have additional

sub-attributes (e.g., the sub-attributes for a person’s address are: street

number, street name, zip code, city, and state). Composite attributes are

displayed with extra lines attached to their sub-attributes.

 Relationships can exist between entities and serve to describe an

association between them. Relationships are depicted as orange diamonds

and those having an additional outline around the diamond relate weak

entities to its owner entity (Elmasri & Navathe, 2007). The number 1 or

letters N and M adjacent to the relationship represent a cardinality ratio

that depicts the maximum number of instances that an entity can

participate in (e.g., 1:N means a one-to-many relationship).

 59

1. ER Diagram

In our ER diagram, we listed LocalUserAccounts as a regular entity with the user

email attribute as the key attribute. LocalUserAccounts is an owner entity that shares a

1:N relationship 'Sets_the' with the weak entity called CapabilityStatus. Since only one

user (system administrator) can set the capability status this type of association between

entities is called partial participation and is displayed as a single line connecting the

relationship to the entities. LocalUserAccounts shares a 1:N relationship 'Manages' with

itself, which represents the system administrator’s ability to manage user accounts.

LocalUserAccounts also shares a M:N (many-to-many) relationship 'Creates_an' with a

regular entity Assertion, whose key attribute is Local_ID. The double lines extending

from LocalUserAccounts to Assertion represents an association between entities called

total participation, which means that all local users can create an assertion (Elmasri &

Navathe, 2007). Assertion is an owner entity type that shares a 1:1 relationship with

DataSource, KbEvidence, KbSupport, and a KbClaim. These weak entities are the

major elements of an assertion that have been determined by the SCIL stakeholders thus

far. DataSource is a new element that is currently under evaluation so we decided to

include this element into our design.

 60

Figure 22. Database ER diagram

2. Relational Database Schema

Taking the ER diagram developed in our first step we used the following steps to

map the ER diagram into a Relational Database Schema (RDS). The schema in turn

guides the design of the database tables.

a. Mapping of Regular Entity Types

Figure 23 displays the RDS, which initially includes LocalUserAccount

and Assertion. They are both assigned their own relation with email and localID,

respectively, as their primary keys.

 61

Figure 23. Mapping of regular entity types

b. Mapping of Weak Entity Types

In step 2, relations that are created for the weak entities, which include

only the non-multivalued attributes are added to the RDS.

Figure 24. Mapping of weak entity types

c. Mapping of Binary 1:1 Relationship Types

In step 3, we merged all of the weak entity relations created in step 2 with

their owner entity (Assertion) keeping localID as the primary key.

 62

Figure 25. Mapping of binary 1:1 relationship types

d. Mapping of Binary 1:N Relationship Types

In step 4, we added foreign keys in both CapabilityStatus and

LocalUserAccount; both of which refer to LocalUserAccount’s primary key: email.

Figure 26. Mapping of binary 1:N relationship types

e. Mapping of Binary M:N Relationship Types

In step 5, we create a new relation called 'Creates_an' that houses two

foreign keys referring to the primary keys in LocalUserAccount and Assertion.

 63

Figure 27. Mapping of binary M:N relationship types

f. Mapping of Multivalued Attributes

Finally, in step 6, we map the multivalued attributes to their own relations

containing their respective attributes along with a foreign key that refers to the primary

key of Assertion. Figure 30 depicts the proposed database tables that will be created for

the system. The table names are the relation names on the side of the attributes and the

column names are the attributes themselves. We populated the database with sample data

and we will discuss that process in Chapter V.

 64

Figure 28. Mapping of multivalued attributes

B. BUSINESS LOGIC TIER

1. XML Schema

In Chapter II, we discussed XML schemas and their significance. In this section

we present aspects of the XML schema related to our client and services. The schema

was generated by Richard Tong, a representative from IARPA-Scientific, Engineering

and Technical Assistance branch. As of May 4, 2010 the current version of the schema is

1.2. We modified and renamed the schema in order to accurately reflect the structure of

the assertions agreed on by the UMD stakeholders. We also employed two versions of the

schema, one for our Web services and one for our client. By doing so, we were able to

remove the XML syntax that did not pertain to the respective operations, which made the

lines of XML easier to manage and sped up the program compilation process. The

 65

StatusReportWS and ExplanationGetWS services utilize UMDSchema_12b.xsd. The

KbUpdate client uses STEPSchema_12b.xsd. In the Appendix, we have listed one

schema that includes the data types and elements defined in both versions.

a. StatusReportWS

The schema element StatusReportResponseMsgPart, shown in Figure 29,

represents the service response to the incoming request. It is constructed with two sub-

elements: Metadata and Payload.

Figure 29. XML schema StatusReportResponseMsgPart

Metadata is composed of the message and requestor identification that is

submitted in the request and is subsequently returned. The Payload element holds a

sequence of sub-elements and types, including StatusReturnBundle, that eventually

provide the capability status.

Figure 30 shows the ServiceStatusReport type that holds the individual

client and service capability status. Although not depicted for brevity, each sub-element

capability is composed of a State and a LastDtg. The State is of type ServiceState that is

 66

the simple type described on the top. LastDtg is of type dateTime, which is an integer-

valued year, month, day and time structure (W3C, 2004).

Figure 30. XML schema ServiceState and ServiceStatusReport

b. ExplanationGetWS

Figure 31 shows the ExplanationGetResponseMsgPart, which is the root

element that comprises the message to be returned to the client. In similar fashion to

StatusReport, it contains a Metadata and Payload. The Payload houses an

ExplanationReturnBundle that, although not depicted, also has a set of Metadata and

Payload. This sub-Metadata holds the AssertionId that references the particular data to be

obtained from our database. The sub-Payload subsequently contains the main elements

that make up an assertion that are listed under the complex type KbAssertion in Figure

32. Although, in concept, the key elements to an assertion remain as the claim, evidence,

and support, the KbAssertion is made up of two elements, the AssertionMetadata and

 67

AssertionContext. However, AssertionClaim, AssertionSupport, and AssertionEvidence

are of separate individual types that are further defined in Figures 34, 35, and 36.

Figure 31. XML schema ExplanationGetResponseMsgPart

AssertionMetadata is composed of three elements including

AssertionFlag, which is also defined in the schema. The AssertionFlag is designed as an

enumeration of the value: 'Public' and 'Private,' which represent viewing authorization

labels for the assertion. AssertionContext has an element called DataSet that is of type

DataSource. Figure 33 shows DataSource. The elements and types defined within

KbClaim, KbEvidence, and KbSupport were specified by the UMD teams.

 68

Figure 32. XML schema KbAssertion

Figure 33. XML schema DataSource

 69

Figure 34. XML schema KbClaim

Figure 35. XML schema KbEvidence

 70

Figure 36. XML schema KbSupport

c. KbUpdate Client

KbUpdate is a client and the KbUpdateRequestMsgPart, pictured below, is

the root element comprising our request message to the external system. The request is

sent to the external system to update the external knowledge base with assertion data. The

request can either add a new assertion, delete a existing assertion, or replace an existing

assertion from the external database. As depicted, the request contains Metadata and

Payload. The Metadata contains a message identification and the requesting team

identification. The Payload is composed of an option of element bundles representing the

desired type of update. Figure 38 displays the AssertionAddBundle. The

AssertionAddBundle element has Metadata that addresses the number of assertions to be

updated and is called AssertionCount. The Payload contains the element Assertion and

references the same elements and types previously defined in the ExplanationGet

description.

 71

Figure 37. XML schema KbUpdateRequestMsgPart

Figure 38. XML schema AssertionAddBundle

 72

The AssertionDeleteBundle (Figure 39) also contains Metadata and

Payload elements. The Metadata is similar to the AssertionAddBundle, however now the

AssertionCount refers to the number of assertions to be deleted. The Payload on the other

hand refers to the particular identification number of the assertion(s) to be deleted. The

AssertionReplaceBundle (Figure 40) uses the same Metadata and Payload structure

where the AssertionCount refers to the number of pairs of assertions to be swapped. The

Payload’s sub-elements describe both the identification number of the assertion from the

external database to be replaced and the particular assertion from the local database that

will replace it. Again, this Assertion is of type KbAssertion described in the

ExplanationGet.

Figure 39. XML schema AssertionDeleteBundle

 73

Figure 40. XML schema AssertionReplaceBundle

2. Class Diagrams

Earlier, we showed the readers our proposed domain model that provided a

conceptual perspective of the system as a whole. In this section, we used the same UML

modeling notation to provide class diagrams that provide the software-focused structural

view of the system, with the main elements indicated by boxes. Each box contains three

sections: name (top section), attributes (middle section), and functions (bottom section).

In the following sections, we will walk through the class diagrams for our StatusReport

service, ExplanationGet service, and KbUpdate Client.

 74

a. StatusReport

Figures 41 and 42 display the class diagram for the StatusReport service.

Class StatusReport implements the client interface SR_PortType and is dependent on the

request message received that is of the type StatusReportRequestMsgPart. The message

will contain both a message ID and a requester ID (Metadata), which are eventually

returned to the client as part of the StatusReportRequestMsgPart along with the

Payload. This Payload class refers to a StatusReturnBundle class, which also has a

sub-class called Payload that refers to the class ServiceStatusReport. ServiceStatusReport

has the three subclasses, which hold the methods that work closest to the Database

class in order to get the information from the database. KbUpdateCapability,

ExplanationGetCapabiltiy, and DataPushCapability refer to the ServiceState class, which

holds an enumeration of string literals: Available, Unavailable, or Unsupported. Finally

the Database class implements the Connection interface, which provides the methods for

interacting with our database. The Connection class is a Java 2 platform object

(http://download.oracle.com/docs/cd/E17476_01/javase/1.3/docs/api/java/sql/Connection.html).

 75

Figure 41. StatusReport class diagram part I

 76

Figure 42. StatusReport class diagram part II

 77

b. ExplanationGet

Figure 43. ExplanationGet class diagram part I

Figures 43 through 46 display ExplanationGet. ExplanationGet

implements the ExplanationGetPortType and is dependent on the request message of type

ExplanatioGetRequestMsg. Similar to StatusReport the same Metadata that comes in the

message is returned to the client along with the Payload. The Payload refers to an

ExplanationReturnBundle class that contains a Payload and Metadata. The Payload is

actually a list of assertions, which are instances of the KbAssertion class. KbAssertion

has two components called AssertionMetadata and AssertionContext. AssertionMetadata

calls the DataBase class directly while AssertionContext refers to DataSource.

 78

KbAssertion also refers to KbClaim, KbSupport, and KbEvidence shown on Figure 45.

Each of these classes either contain instances of classes that call the DataBase class or

call the DataBase class directly in order to obtain the assertion referenced by the assertion

ID used in Payload.

Figure 44. ExplanationGet class diagram part II

 79

Figure 45. ExplanationGet class diagram part III

1

 80

Figure 46. ExplanationGet class diagram part IV

 81

c. KbUpdate

Figure 47. KbUpdate class diagram part I

Figure 47 above shows the first half of the KbUpdate client class diagram.

Our request message contains Metadata and Payload. The Payload holds a bundle

depending on the operation desired. Each of the bundle classes have their own

components that continue in Figure 48. The AssertionAddBundle and

AssertionReplaceBundle eventually use the same class path structure to obtain the

assertion data as the ExplanationGet service. AssertionDeleteBundle only has one class

that handles the list of assertion IDs to be removed from the external database.

 82

Figure 48. KbUpdate class diagram part II

C. WEB TIER

In this section we will describe the design of the WSDL documents for our client

and services. We employed two WSDL files; one for KbUpdate called

STEPPortTypes_12b.wsdl and another for both ExplanationGet and StatusReport called

UMDServices_12b.wsdl. We did this because our prototype, discussed in Chapter V,

consists of two separate applications; one for the Web services and the other for the Web

client. The WSDL files were modified and renamed from the documents originally

generated as stepGovServices_12.wsdl and stepPortTypes_12.wsdl (Tong, 2009). The

 83

binding and service sections of the UMD Services WSDL were left for us to define since

they pertained to our network protocol details. Sub-sections 1 and 2 show the main

sections of the WSDL files.

1. UMD Services

Figure 49. UMD services WSDL part I

Figure 49 above shows the types and messages sections. The Schema document

was generated separately and is referred to in the types section by name. The messages

section shows the part name 'omnia' to represent the name of the request and response

messages to be used between service and client. Figure 50 shows StatusReportPortType

and ExplanationGetPortType as the portTypes to be used by the client. The message

types previously defined are referenced here as the input and output messages.

 84

Figure 50. UMD services WSDL part II

Figure 51. UMD services WSDL part III

 85

Figure 51 shows the binding between the service interface descriptions

(StatusReportPortType and ExplanationGetPortType) to the their respective service

implementations (StatusReport and ExplanationGet). Note that we are using SOAP over

HTTP.

Finally, Figure 52 shows the service section combining the previously defined

port names and binding names to our network address creating the end-point.

Figure 52. UMD services WSDL part IV

2. UMD Client

Figure 53 shows the KbUpdate WSDL. Aside from the name changes in the

messages, ports, and binding sections that reflect the KbUpdate operation, the structure of

this document is the same as the UMD Services WSDL. The service section provides the

combination of the binding and port names and also specifies the network address of the

external service.

 86

Figure 53. UMD client WSDL

D. PRESENTATION TIER

We now shift our focus to the presentation tier, which contains the components

that create and execute the UI necessary for our users to communicate with the other tiers

in the system.

Based on the requirements from Chapter III, a closed Web application is

necessary to implement the UI. Using a closed Web application to serve as our UI means

that only our users will be presented with the Web pages to interface with and execute the

system functionality; similar to how a person would use the Internet to manage his/her

 87

personal online banking account. The UMD performer team users will perform the

system operations by using the Web pages to interface with the local system’s business

logic through an HTTP connection. The interaction is initiated with a request for a Web

page by the user’s Web browser. The local system’s Web server will return the requested

Web pages to the users for execution. The File system manages the HTML files for the

Web server and the Application server executes the server-side business logic (Conallen,

2003). Figure 54 shows the interplay among the components.

Figure 54. Web architecture (From Booch, 2001)

The remainder of this section is separated into two sections. In Section 1, we used

the Microsoft PowerPoint 2007® application to develop a conceptual design of the UI

Web pages. We also discuss the intended functionality behind each Web page and step

through what a user would encounter while using the Web application. Section 2 shows

the respective Web pages’ UML class diagrams.

1. UI Web Pages

We begin our design of the UI with another UML modeling tool called an

Activity Diagram. This diagram displays the workflow associated with our UI. As

depicted in Figure 55, the basic structure of the UI allows a user to sign in and view the

main menu. The main menu provides the user an option to perform one of several system

operations. Finally, the user can sign out of the system when complete.

 88

Figure 55. UI workflow

a. Sign In

The first step for our users would be to sign into our system through a sign

in page that requires the user to input a username and password. Figure 56 displays our

proposed design of what that page would look like.

 89

Figure 56. Sign-in Web page

b. Main Menu

Figure 57 represents a preliminary design of the main menu, which is

displayed following user authentication. The main menu will display the status of the

core system capabilities, show the ten most recent activities, provide the user a means to

exit the system, and provide the user hyperlinks to navigate to the desired Web pages to

perform the system functions. For clarity purposes, we designed the main menu image to

show only four activities instead of ten. A DTG is associated with the activity. The newer

and older buttons under the recent activity will allow the user to view additional activity

not displayed. A color-labeled display on the top right corner shows the current state of

the core capabilities. The buttons in yellow serve as hyperlinks to the Web pages.

 90

Figure 57. Main menu Web page

c. Store Assertion

If the user wishes to store an assertion that has not been previously stored

into the local database, the user would select the Store assertion tab. The application

would then provide the user a Web interface to input the assertion data. For

demonstration purposes, we provide two pages shown in Figures 58 and 59. However, the

data could be input by using just one Web page. When complete, the user is given one of

three store options to execute:

 Store—Stores the assertion in the local database only.

 Store and Transfer—Stores the assertion in the local database and then

executes the KbUpdate client to add that assertion to the external database.

 Store and Replace—Stores the assertion in the local database and then

executes the KbUpdate client to transfer that new assertion over to the

external database in order to replace an existing assertion.

 91

Figure 58. Store assertion I

Figure 59. Store assertion II

 92

When the user selects the option to Store and Replace, the application

would display the Web interface depicted in Figure 60. The interface allows the user to

search for the assertion by using one of two search options: by external ID or author. The

output of the search would be displayed in a form that allows the user to select only one

assertion that is currently in the external database. Upon selection, a short summary is

displayed for the user to view before replacement.

Figure 60. Store assertion III

d. Transfer Assertion

The Transfer assertion operation will execute the KbUpdate client for

assertions that have been previously stored in the local database only. Figure 61 shows,

upon selection, that the application will provide the user an option between sending an

assertion not currently in the external database or to transfer an assertion meant to replace

 93

an existing one. Figure 62 shows the interface upon selection of the Send a new assertion

option. The user is provided a means to search for and to select the assertion(s) to be

transferred. If the user selects the option to Replace an existing assertion the user will

first choose the assertion that will do the replacing using a Web page similar to Figure 62.

The user will then select the assertion to be replaced through a Web page that looks

similar to Figure 60.

Figure 61. Transfer assertion I

 94

Figure 62. Transfer assertion II

e. Edit Assertion Data

The Web interface under the Edit assertion operation will allow the user to

select an assertion based on a search for either the author or the assertion local ID. The

user would then have the option to either edit or delete the selected assertion.

After a user selects an assertion and chooses the option to edit, an interface

capable of being edited, similar to Figures 58 and 59 above, will appear with the text

fields populated with the current assertion data. The user could change the data in the text

fields and save the new data. If an external ID was associated with the assertion selected

for editing, then the KbUpdate client will execute and replace the assertion in the external

database with the newly modified version; otherwise the newly edited assertion will be

stored locally with the same local ID. Figure 63 displays the Edit Assertion Web

interface.

 95

If the user selects the delete option, and there is not an external ID

associated with the assertion, then the assertion will only be removed from the local

database. However, if there is an external ID associated with the assertion to be deleted,

the user will receive a prompt, as depicted in Figure 64, to decide between deleting an

assertion from the external database only, or deleting the assertion from both the local

and external databases. In either case, the external ID for that assertion will no longer be

recognized by the external system, and will be removed from the local database. The user

can also select the help button to understand the ramifications of his/her decision. In

either case, the KbUpdate client will be executed to delete the respective assertion

referred to by the external ID.

Figure 63. Edit assertion

 96

Figure 64. Edit assertion II

e. Set Capability Status

The Set Capability Status operation will only allow an administrator to set

the capability status. If a non-privileged user would attempt to access this operation, the

application would generate a message for the user stating that the user does not have

those privileges. The Web interface will show the administrator three sets of radio

buttons per capability. The administrator would select the appropriate status per

respective capability, and then save the operation (see Figure 65).

 97

Figure 65. Select the status

f. User Accounts

The User Accounts operation is also restricted to administrators in the

same way as setting the capability statuses. When selected, the administrator will be

given the option (Figure 66), to either create account or to modify account.

If the administrator selects the option to create account, the application

will display an interface with text fields for entering the user’s personal data. When

complete, the administrator would save the user account information, thereby storing the

data in the local database. See Figure 67.

If the administrator selects the option to modify account, a Web interface

listing all of the users will be shown. The administrator would select the user account to

perform either a modify or delete function (Figure 68). If modify is selected, the

administrator will be presented with an interface capable of being edited (Figure 69), but

with the text fields populated with the user’s account data. The administrator can make

changes as necessary and save the changes, thereby updating the local database. If the

 98

administrator selects delete, the application will prompt the administrator for

confirmation. After confirmation, the user account data will be permanently removed

from the local database.

Figure 66. User account I

Figure 67. User account II

 99

Figure 68. Modify account

Figure 69. Update account

2. UI Class Diagrams.

We now present the models of the UI Web application using UML class

diagrams. It is important to note that the original UML standard notations were never

intended to represent Web pages. It was not until the Web Application Extension (WAE)

 100

for UML was adopted that Web pages were capable of being represented by new

modeling notations. Jim Conallen, co-founder of UML, states that the extension to UML

is expressed using the following mechanisms: stereotypes, tagged values, and constraints

(Conallen, Modeling Web Application Architectures with UML, 1999). In his book,

Building Web Applications With UML Second Edition, Conallen describes these

mechanisms as follows:

Stereotype, an extension to the vocabulary of the language, allows us to
attach a new semantic meaning to a model element. Stereotypes can be
applied to nearly every model element and are usually represented as a
string between a pair of guillemets: « ». However, they can also be
rendered by a new icon.

Tagged value, an extension to the property of a model element, is the
definition of a new property that can be associated with a model element.
Most model elements have properties associated with them. Classes, for
instance, have names, visibility, persistence, and other attributes
associated with them. A tagged value is rendered on a diagram as a string
enclosed by brackets.

Constraint, an extension to the semantics of the language, specifies the
conditions under which the model can be considered well formed. A
constraint is a rule that defines how the model can be put together.
Constraints are rendered as strings between a pair of braces: {}.

Conallen defines three core class stereotypes: Server page, Client page, and

HTML form; all three of which comprise the aforementioned mechanisms. These classes,

and the stereotype class associations described in Table 9, were used to design the class

diagrams in the following pages. Figure 70 shows the WAE class diagram for the main

menu.

 101

Table 9. Stereotyped associations (From Conallen, 2003)

Stereotype Description

 «link» A relationship between a client page and a Web page. The target may be a client page class

or a server page class.

«build» A directional relationship between a server page and a client page. This relationship

identifies the HTML output of a server page’s execution.

«submit» A directional relationship between an «HTML form» and a server page. It references a

server-side resource. However, when the resource is requested from the server, all the

form’s fields attributes are submitted, along with the request where they are processed.

«redirect» A directional relationship between one server page and another server page or a client page.

This association indicates a command to the client to request another resource.

Figure 70. Main menu

 102

From the main menu, the user could choose among the five operations. Figure 71

shows the interaction between the classes for the case when the user chooses to store an

assertion. This model demonstrates that a user can still replace a current assertion in the

external database after its initial creation at the local level. As per the requirements in

Chapter III, the diagrams depict feedback in the form of a Web page after the successful

completion of the respective operation.

Figure 71. Store assertion

Figure 72 shows the user’s choice in transferring an assertion that has only been

stored locally. Again, the user does have the option to replace an assertion currently in

the external database; that option is a continued in Figure 73.

 103

Figure 72. Transfer assertion

Figure 73. Transfer assertion II

 104

Figure 74 shows the user’s option to either edit or delete an assertion from the

databases. The form DeleteForm provides the user another option, to remove the

assertion locally only or from the external database, too.

Figure 74. Edit assertion

Setting the capability status requires the administrator to choose from one of three

sets of radio buttons per capability. The selected button is represented in the form

DeleteForm. See Figure 75.

 105

Figure 75. Set capability statuses

Finally, the administrator is given the option either to create a new user or modify

an existing user account. See Figure 76.

Figure 76. User accounts

 106

E. SUMMARY

In this chapter, we took the requirements from Chapter III and used them to

provide the readers our proposed system design. We began our design with the Database

tier, wherein we summed up and displayed the attributes, entities, and relationships of the

system in an ER diagram. We followed up by using an algorithm to map the ER diagram

into an RDS, which we will use to create our database tables. Our next step was to design

the Business Logic tier by presenting aspects of our XML Schema and generating the

UML class diagrams that express the functionality of the core operations of our system:

the StatusReport WS, the KbUpdate client, and the ExplanationGet WS. For our Web

tier, we presented the WSDL documents that we will use as our endpoints. Finally, for

the Presentation tier, we showed the reader our design for the Web pages to be used by

the local user to operate the system, followed by the Web application UML class

diagrams. In Chapter V, we present our prototype of the system to be used by the UMD

performer team.

 107

V. PROTOTYPE

In Chapter I, we described the basic system features that the UMD performer

team would need in order to contribute to the SCIL program. The first focused on the

local user’s management of the assertion data that would allow for the collection, storage,

and modification of the assertion prior to distribution. The second was to allow for

remote access to the data. This ability is realized with the use of our core Web services

described in Chapter III (StatusReportWS and ExplanationGetWS). The third feature was

the ability to transfer the data to the external knowledge repository over the Internet. Our

Web service client, KbUpdate, has been designed to manage the transfer of assertion data

to the external database; this includes the ability to replace and delete assertion data.

In this chapter, we will describe the prototype of the system. Our prototype

consists of a database store that supports our two core Web services (StatusReportWS

and ExplanationGetWS), and our Web service client (KbUpdate). The prototype also

involves the application server in which the Web services are deployed. Our objective for

this prototype was two-fold. First, we wanted to provide a proof of concept

implementation for both Web services and WS client in support of the preliminary

engineering tests. Second, we wanted to provide the stakeholders with a working system

capable of being modified and upgraded for their future use.

Our system was developed in an Apple® Macintosh desktop computer running

OS X. This chapter begins with the implementation of our local database. We will

describe the database tables we developed to interact with the business logic of our

system. Next, we present our Web services followed by our client. Using screenshots of

the applications, we will walk the reader through the sequence of events that transpire in

order to execute each operation.

A. MYSQL DATABASE

Although the SRS in Chapter III described the DBMS to be a Relational-type, we

also researched into the feasibility of using an Object-Oriented Database Management

 108

System instead. In the end, we selected the MySQL Community Server version 5.1.49

DBMS (www.mysql.com) for our prototype because the database is, at this point in time,

required to handle only simple data types (i.e., numbers and strings). This edition of the

MySQL DBMS is also open-sourced, and is compatible with the NetBeans Integrated

Development Environment (IDE), which we used to develop our applications. Based

on the RDS we designed in Chapter IV, we constructed a total of six tables to support

our system operations: status, assertionData, claimTarget, contextDataSegment,

evidenceStatements, and supportTechTerm.

1. Status

Figure 77 displays a description of the status table that we generated using SQL.

The Field column on the left holds the names of the columns in the table. The status table

is queried for all six values whenever the StatusReportWS is consumed by the external

client. The DTG columns are separately updated with the successful execution of either

the KbUpdate or DataPush clients or when the ExplanationGetWS has been consumed.

Figure 77. MySQL status table

2. AssertionData

Figure 78 represents the assertionData table. This table holds all of the assertions

that are referenced by both localID and externalID. However, not all of the assertion data

can be found in this table. We needed to generate four other tables to hold the remainder

 109

of the data because those tables would be required to hold at least one row of data per

assertion. To handle this one-to-many relationship, we created a foreign key called

'localID' in claimTarget, evidenceStatements, supportTechTerm and contextDataSegment

that referenced localID from assertionData. This relationship allowed for the entire

assertion data to be inserted into and read from our database tables. Figure 79 shows the

four additional tables.

Figure 78. MySQL assertionData table

 110

Figure 79. MySQL assertion-related tables

B. UMD OPERATIONS

Now that the reader has seen our underlying data store, let us turn to the execution

of the three core prototype operations. We designed our applications with the NetBeans

IDE version 6.8, an open-source application development tool, using the JavaTM

Development Kit 6 update 20. Both Web services were developed under one Java Web

application project, entitled UMD, and subsequently deployed to the open-source

Glassfish Web application server version 3. The program required to manage the

 111

assertion data and the capability status was developed using the Java Standard Edition

application called NPS_SCIL. A rudimentary command line UI supported by Java Swing

GUI components were developed to assist the local user in running the program—the

ideal UI being the Web application designed in Chapter IV.

1. StatusReport

a. Setting the Status

A local user can execute the NPS_SCIL application by running the

NPS_SCIL.jar file created from the compiling process. As displayed in Figure 80, upon

execution, the user is presented with a set of options. Selecting the 'update' command will

generate a window for the user to select the appropriate status per capability. When

finished, the user clicks on the 'Okay' button that executes an excerpt of the Java code

displayed in Figure 81, which calls the method named writeCapabilityStatus(), displayed

in Figure 82, to insert the desired status values into the database table status shown in

Figure 83.

Figure 80. Executing NPS_SCIL.jar

 112

Figure 81. Method call to write the statuses

Figure 82. Connection to the database

Figure 83. Status table after execution

 113

b. The Web Service

The Web application can be executed by running the UMD.war file

generated from the compiling process. Prior to deploying the WS to the Glassfish server,

we tested it by using the open-source software called soapUI version 3.0.1

(www.eviware.com). This software allows users to act as clients and consume Web

services over the Internet. This was important to us because we needed a way to

determine if the correct data was returned upon a query from the external client. Figure

84 shows the soapUI split screen interaction between the client’s request on the left and

the StatusReportWS response on the right.

Figure 84. Testing StatusReportWS

Following the successful test, we deployed the UMD.war file to the

Glassfish server to be consumed by the external client, as depicted in Figure 85.

 114

Figure 85. Deploying UMD

2. KbUpdate client

In this section, we step through the execution of the KbUpdate client. The

functionality behind the options to either add, delete, or replace was discussed in detail in

the two previous chapters. In this section, we will focus on the ‘adding’ function of the

client. An assertion needs to be in the local database before the update so we will begin

with storing the assertion.

a. Storing the assertion

Figure 86 below shows the execution of the NPS_SCIL.jar file from the

command line. The user selects the option to 'store.' The user is presented with an

interactive window to enter the assertion data. When the user is finished, he clicks on the

'save' button, which runs the code that executes five separate SQL statements in order to

store the assertion data into its respective tables, described in section A.2 above. The

system generates a local ID for the assertion and inserts that ID into all five assertion-

related tables in the same row(s) that pertains to that assertion. Figure 87 shows an

excerpt of the assertionData table that highlights the local ID and the lack of an external

 115

ID at this point in the sequence. Note in Figure 87 that the predicate_name and

lang_use_dom columns share the same data; this is because the data entered was for test

purposes.

Figure 86. Storing an assertion

Figure 87. Assertion in the database

 116

b. Updating the External Database

From the command line, instead of selecting 'store,' the KbUpdate client is

run by selecting the option to ‘modify.’ The application then gives the user the option to

either add, delete, or replace. The user selects the option to 'add' and is then prompted for

a message ID and for the localID of the assertion to be added. When the user submits the

localID to be transferred, the system reads the respective assertion data in all five

assertion-related tables and sends the data to the external system. Figure 88 is a

screenshot of the Web page generated by the external system’s Web server called the

STEP server, which displays the list of assertions currently in the external database

(Naval Research Laboratory, 2010). For this demonstration, the listing created on 2010-

08-03 refers to the assertion with local ID #9. Figure 89 is a screenshot of another STEP

server generated Web page that shows the specific ID #9 assertion elements following

the successful transfer (Naval Research Laboratory, 2010). The external system generates

and returns an external ID that refers to that assertion, and the local system writes

that external ID into the rows of the five tables that pertain to the local copy of the

assertion that was just sent. Figure 90 shows two of the five tables with external ID

'UMDb39f431a.'

 117

Figure 88. External Web server

 118

Figure 89. External Web server

Figure 90. External ID in the database

 119

3. ExplanationGetWS

b. The Web Service

Now that we have data that is ready to be retrieved, we test the WS using

the soapUI software, as shown in Figure 91. The key component to the request is the

external ID. Using the external ID, the local system retrieves the respective assertion data

located in the assertion-related tables. Finally, with the successful test of the

ExplanationGetWS using soapUI, we deployed the .war file to the Glassfish server for its

subsequent consumption by the external client, as shown in Figure 85.

Figure 91. Testing ExplanationGetWS

C. USER FEEDBACK

With the operating prototype in hand, we obtained an acceptance test by a UMD

representative. We had the representative step through the following sequence of

 120

operations: setting the capability status, storing a new assertion, transferring an assertion,

replacing an assertion, and deleting an assertion. The StatusReport WS and all three

functions of the KbUpdate were fielded in order to assist in the completion of a series of

engineering tests with the external system. Knowing that not all of the desired features

were implemented in the prototype, the representative was satisfied with the prototype

because it accomplished its intended purpose, and it allowed for future modifications as

necessary.

At this point, the system has been used in multiple engineering tests following

directed changes to the XSD by both IARPA and UMD. An agreed-upon structure of an

assertion is still under discussion by the UMD stakeholders, so actual assertions have yet

to be generated and forwarded to the external database.

D. SUMMARY

In this chapter, we used the system design discussed in Chapter IV to develop our

proposed prototype automated system to manage the assertion data generated by the

UMD performer team. The prototype provides a means for the stakeholders to validate

the system design and a working platform for follow-on research and development.

We used the MySQL server as our database and created six tables to store the data

necessary to execute the core operations. Our Web client application provides multiple

functions including:

 the ability to add, replace, or delete assertions

 the ability to store an assertion into the database

 the ability to set the capability statuses

We also provided screenshots of the assertion as displayed in the external STEP

application server. Both of our Web services and our Web client were developed using

the Java programming language. We demonstrated to the reader the WS testing results

using the soapUI software. Finally, we deployed our Web services to the Glassfish

application server in order to await future external client requests.

 121

VI. CONCLUSION

A. SYNOPSIS

The goal for this thesis was to design and develop an automated system to be used

by the UMD performer team in support of the SCIL program led by IARPA. The SCIL

program seeks to investigate various methodologies to help understand the social goals of

people by demonstrating a relationship between these goals and their particular language

use. UMD’s role in the program is to identify the social goals that pertain to persuasion

by analyzing chat-based Web forums. The end product of the analysis of the unstructured

text is a set of assertions that declare acts of persuasion were attempted.

The system we designed enables users to locally store, manage, and transfer the

assertions to the external system. Eventually, SCIL will be combined with a functionality

that uses artificial intelligence techniques to process raw text. The processing will result

in assertions that are then forwarded to an external knowledge base run by IARPA.

In Chapter I, we stated that the solution to the system required by the UMD

performer team in the short run stemmed from the answers to the following questions:

1. What are the requirements for system to be implemented by the NPS

performer team?

2. What is the appropriate design of a modular framework to effectively

manage the natural language assertions in a knowledge base repository

and the sharing of the knowledge via the World Wide Web?

3. What is the appropriate Web-service design to allow for multiple users to

update the knowledge base repository of natural language assertions from

multiple sites?

To address these questions, we began our research with an investigation of SOA

and Web services. This background information introduces the key concepts we

expanded upon in the remainder of the thesis.

 122

Chapter III began with the introduction of an abstract system domain model that

showed the components and their relationships to one another. We then presented the

stakeholder-validated software requirements to answer question number one. The SRS

included several use cases and SSDs to demonstrate the core system functionality. This is

the initial version of the requirements specification, and is subject to iterative

development based on the needs of the stakeholders.

For questions two and three, we started with an illustration of the four main tiers

of the system architecture: database, business logic, Web, and the presentation. We then

delved into each tier and discussed its respective design features. For the database, we

presented an ER diagram and then followed a six-step algorithm to normalize the

elements into a relational database design. The business logic tier was addressed by

showing the particular system data types and elements of the XML schema to be used in

the creation of our WS and client, along with their respective class diagrams. For the

Web tier, we presented elements of our WSDL, which described our WS interfaces for

our future clients. Lastly, using PowerPoint, we prototyped the layout of the graphical

user Web interface that will enable the local users to perform the core system

functionality including managing the assertion data and capability status. We finished the

design of our presentation tier with the Web application class diagrams.

The thesis concludes with a description of the SCIL prototype that we

implemented. We demonstrated the execution of the system functions by walking the

reader through a scenario that involved a user setting the capability status and also

performing the three main functions of the KbUpdate client.

The significance of this research is that it will support the analysis of the social

dynamics behind certain groups of interest by managing the assertions generated from

online chat communication. The prototype will serve as a vehicle to elicit additional

requirements for SCIL.

B. FUTURE WORK

The prototype described in this thesis uses a relational database schema to

organize the system data. We did not delve into the use of an object-relational or an

 123

object-oriented database management system. Since we used an object-oriented

programming language to develop the system software, it would seem to be more

efficient to use a database that is designed to store objects instead of tuples. The data

types used in the prototype where simple and easy to implement using MySQL, but a

RDBMS does not handle complex data types as well as object-relational or object-

oriented database management systems. An analysis of using either of these database

management systems is a subject of future research.

The system design did not address concurrency issues that can be encountered

when, for example, two or more users attempt to concurrently modify the same assertion.

A race condition is a particular example of a concurrency issue. Stallings defines a race

condition as “A situation in which multiple threads or processes read and write a shared

data item and the final result depends on the relative timing of their execution” (Stallings,

2009, p. 207). An analysis of these system issues and their consequences would help to

ensure that the integrity of the data is not compromised.

We designed a Web GUI for the system, but this feature was not implemented in

our prototype. An analysis of some of the popular Web-development technologies (e.g.,

Ajax Frameworks, Java Server Faces, and Microsoft’s ASP.Net) is needed to identify

which of these techniques should be used to implement the deployed system.

The intent behind the DataPush client mentioned in Chapter III is still in debate

amongst the UMD stakeholders. Since the KbUpdate client already sends assertions to

the external system, it would be redundant to implement another Web client alongside

KbUpdate to perform the same function. We recommend that the DataPush client either

be dropped from further discussion or clearly specified to warrant the development of

another Web client.

 124

THIS PAGE INTENTIONALLY LEFT BLANK

 125

APPENDIX. XML SCHEMA

<?xml version="1.0" encoding="UTF‐8"?>
<!‐‐ edited with XMLSpy v2010 (http://www.altova.com) by Javier Palomo (Naval
Postgraduate School) ‐‐>
<xs:schema xmlns:stepd="http://www.iarpa.gov/SCIL/STEP_Schema"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.iarpa.gov/SCIL/STEP_Schema"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.3d"
xml:lang="EN">
<!‐‐ Schema Documentation ‐‐>
<xs:annotation>
<xs:documentation>
XSD for STEP (the IARPA SCIL Program SOA Platform)
Original Publication Date: 2009‐10‐26
Current Date: 2010‐08‐27
Current Version: 1.3d
</xs:documentation>
<xs:documentation>
Change Log (from Version 1.2)
2010‐07‐14 : Makes claims predicate‐based; no wildcards
2010‐07‐16 : Enumerates claims by team
2010‐07‐21 : Changes the claim context element to SocialConstructDomain‐‐an
enumerated type
2010‐08‐21 : Adds a SocialConstruct element to the assertions context‐‐a simple
string
==
</xs:documentation>
</xs:annotation>
<!‐‐ Global Types used in defining KB content ‐‐>
<!‐‐ Utility Types‐‐>
<xs:complexType name="DataSource">
<xs:annotation>
<xs:documentation>Type that defines the data source used in generating an
assertion.
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="DataMetadata">
<xs:annotation>
<xs:documentation>Metadata that describes the source of the data.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="SourceName" type="xs:string">
<xs:annotation>
<xs:documentation>The name of the source.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="SourceLocation" type="xs:anyURI">
<xs:annotation>
<xs:documentation>A URI that allows the data to be located. Can be a dummy
value.</xs:documentation>

 126

</xs:annotation>
</xs:element>
<xs:element name="SourceLanguage" type="xs:language">
<xs:annotation>
<xs:documentation>The human language of the source.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="SourceType" type="xs:string">
<xs:annotation>
<xs:documentation>The type of source: blog, email, broadcast conversation,
etc.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="SourceMedium">
<xs:annotation>
<xs:documentation>A enumerated list. Currently just text or
speech.</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="text"/>
<xs:enumeration value="speech"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="DataSegment" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>A segment of the source data processed in generating the claim.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="SourceDataSegment" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="KbClaim">
<xs:sequence>
<xs:element name="PredicateClaim">
<xs:complexType>
<xs:sequence>
<xs:element name="PredicateName" type="xs:string" default="Persuasion Attempt"/>
<xs:element name="Speaker">
<xs:complexType>
<xs:sequence>
<xs:element name="Entity" type="stepd:Entity"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Target">
<xs:complexType>
<xs:sequence>

 127

<xs:element name="Entity" type="stepd:Entity" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="type" type="xs:string" default="directed">
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Entity">
<xs:sequence>
<xs:element name="id" type="xs:integer"/>
<xs:element name="type" type="xs:string" default="person">
<xs:annotation>
<xs:documentation> "type" refers to the entity being either a person or a
group</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="role" type="xs:string">
<xs:annotation>
<xs:documentation> "role" refers to the wether the entity is either the speaker or
target</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="KbEvidence">
<xs:sequence>
<xs:element name="EvidenceValue" type="xs:string">
<xs:annotation>
<xs:documentation>An overall assessment of the degree to which the set of evidence
statements support the claim. It can be a Bayesian probability, an interval
probability, a fuzzy number, a modal, a value on a Likert scale, etc. ; whatever
the underlying theory of evidence supports.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="EvidenceStatement" type="stepd:EvidenceStatement"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="Display">
<xs:restriction base="xs:string">
<xs:enumeration value="Weak Confidence."/>
<xs:enumeration value="Strong Confidence."/>
<xs:enumeration value="No Confidence."/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="EvidenceStatement">
<xs:sequence>
<xs:element name="ConstituentMultiset">
<xs:complexType>
<xs:sequence>
<xs:element name="PersuasionTactic" maxOccurs="unbounded">
<xs:complexType>
<xs:group ref="stepd:PersuasionTacticGroup"/>

 128

</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:group name="PersuasionTacticGroup">
<xs:all>
<xs:element name="tactic" type="xs:string"/>
<xs:element name="startline" type="xs:integer"/>
<xs:element name="endline" type="xs:integer"/>
<xs:element name="doc" type="xs:string"/>
</xs:all>
</xs:group>
<xs:complexType name="KbSupport">
<xs:sequence>
<xs:element name="TheoreticalFrame" type="xs:string"/>
<xs:element name="TechnicalTerm" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="TechnicalTermGloss" type="xs:string"/>
<xs:element name="DataSnippet" type="xs:string"/>
</xs:sequence>
<xs:attribute name="term" type="xs:string" default="redefinition"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="KbAssertion">
<xs:sequence>
<xs:element name="AssertionMetadata">
<xs:complexType>
<xs:sequence>
<xs:element name="AssertionId" type="xs:string">
<xs:annotation>
<xs:documentation>Performer team generated ID for this
assertion.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="AssertionDtg" type="xs:dateTime">
<xs:annotation>
<xs:documentation>Performer team generated DTG on which this assertion was
created.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="AssertionFlag" type="stepd:AssertionFlag">
<xs:annotation>
<xs:documentation>Performer team generated flag that indicates whether this is a
"public" or "private" assertion.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="AssertionContext">
<xs:complexType>

 129

<xs:sequence>
<xs:element name="LanguageUseDomain" type="xs:string" default="Persuasion
Attempt">
<xs:annotation>
<xs:documentation>A string that specifies the Language Use domain that the
assertion targets. Will ultimately be an enumerated list.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="DataSet" type="stepd:DataSource">
<xs:annotation>
<xs:documentation>The data set from which the evidence for the claim is
drawn.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="AssertionClaim" type="stepd:KbClaim"/>
<xs:element name="AssertionEvidence" type="stepd:KbEvidence"/>
<xs:element name="AssertionSupport" type="stepd:KbSupport"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="AssertionFlag">
<xs:restriction base="xs:string">
<xs:enumeration value="private"/>
<xs:enumeration value="public"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ServiceState">
<xs:annotation>
<xs:documentation>Type that defines the state that a service capability can be
in.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:enumeration value="available"/>
<xs:enumeration value="unavailable"/>
<xs:enumeration value="unsupported"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="ServiceStatusReport">
<xs:annotation>
<xs:documentation>Type that defines the status report generated by a Performer
team.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="KbUpdateCapability">
<xs:annotation>
<xs:documentation>Status of the KbUpdate capability. Current state and DTG of last
kb update.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="State" type="stepd:ServiceState"/>
<xs:element name="LastDtg" type="xs:dateTime"/>
</xs:sequence>
</xs:complexType>
</xs:element>

 130

<xs:element name="DataPushCapability">
<xs:annotation>
<xs:documentation>Status of the DataPush capability. Current state and DTG of last
data push.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="State" type="stepd:ServiceState"/>
<xs:element name="LastDtg" type="xs:dateTime"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ExplanationGetCapability">
<xs:annotation>
<xs:documentation>Status of the ExplanationGet capability. Current state and DTG
of last explanation returned.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="State" type="stepd:ServiceState"/>
<xs:element name="LastDtg" type="xs:dateTime"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="StatusRequestBundle">
<xs:annotation>
<xs:documentation>Type that defines a STEP server request for a status check.
Currently not used.</xs:documentation>
</xs:annotation>
</xs:complexType>
<xs:complexType name="StatusReturnBundle">
<xs:annotation>
<xs:documentation>Type that defines the Performer team response to a status check
request.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Payload">
<xs:complexType>
<xs:sequence>
<xs:element name="StatusReport" type="stepd:ServiceStatusReport"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ExplanationRequestBundle">
<xs:annotation>
<xs:documentation>Type that defines a STEP server request for an explanation.
Currently minimally specified.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Metadata">
<xs:complexType>
<xs:sequence>
<xs:element name="AssertionId" type="xs:string">

 131

<xs:annotation>
<xs:documentation>STEP ID of the assertion for which an explanation is
requested.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ExplanationReturnBundle">
<xs:annotation>
<xs:documentation>Type that defines the Performer team response to an explanation
request. Currently a placeholder.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Metadata">
<xs:complexType>
<xs:sequence>
<xs:element name="AssertionId" type="xs:string">
<xs:annotation>
<xs:documentation>STEP ID of the assertion that this explanation refers
to.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Payload">
<xs:complexType>
<xs:sequence>
<xs:element name="Assertion" type="stepd:KbAssertion" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:element name="StatusReportRequestMsgPart">
<xs:annotation>
<xs:documentation>Used in a message sent by the STEP server to request a Performer
team capability status check.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="Metadata">
<xs:complexType>
<xs:sequence>
<xs:element name="MessageId" type="xs:string">
<xs:annotation>
<xs:documentation>Message ID generated by the STEP server.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="RequestorId" type="xs:string">
<xs:annotation>
<xs:documentation>ID of the requestor (typically the STEP server) of the status
report.</xs:documentation>
</xs:annotation>

 132

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="StatusReportResponseMsgPart">
<xs:annotation>
<xs:documentation>Used in a message sent by a Performer team in response to a
StatusReport request.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="Metadata">
<xs:complexType>
<xs:sequence>
<xs:element name="MessageId" type="xs:string">
<xs:annotation>
<xs:documentation>ID of the status request message to which this message is a
response.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="RequestorId" type="xs:string">
<xs:annotation>
<xs:documentation>ID of the ultimate requestor of the status check. Typically the
STEP server.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Payload">
<xs:complexType>
<xs:sequence>
<xs:element name="StatusReturnBundle" type="stepd:StatusReturnBundle"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ExplanationGetRequestMsgPart">
<xs:annotation>
<xs:documentation>Used in a message sent by the STEP server to request an
explanation for an assertion.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="Metadata">
<xs:complexType>
<xs:sequence>
<xs:element name="MessageId" type="xs:string">
<xs:annotation>
<xs:documentation>Message ID generated by the STEP server.</xs:documentation>
</xs:annotation>
</xs:element>

 133

<xs:element name="RequestorId" type="xs:string">
<xs:annotation>
<xs:documentation>ID of the requestor (typically a user) of the
explanation.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Payload">
<xs:complexType>
<xs:sequence>
<xs:element name="ExplanationRequestBundle"
type="stepd:ExplanationRequestBundle"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ExplanationGetResponseMsgPart">
<xs:annotation>
<xs:documentation>Used in a message sent by a Performer team in response to an
ExplantionGet request.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="Metadata">
<xs:complexType>
<xs:sequence>
<xs:element name="MessageId" type="xs:string">
<xs:annotation>
<xs:documentation>ID of the explanation request message to which this message is a
response.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="RequestorId" type="xs:string">
<xs:annotation>
<xs:documentation>ID of the ultimate requestor of the explanation. Typically an
end‐user.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Payload">
<xs:complexType>
<xs:sequence>
<xs:element name="ExplanationReturnBundle" type="stepd:ExplanationReturnBundle"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

 134

THIS PAGE INTENTIONALLY LEFT BLANK

 135

LIST OF REFERENCES

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web services: Concepts,
architectures and applications. Heidelberg: Springer.

Booch, G. (2001, June 1). Architecture of Web applications. Retrieved July 26, 2010,
from http://www.ibm.com/developerworks/ibm/library/it-booch_web/

Conallen, J. (1999). Modeling Web application architectures with UML.
Communications Of The ACM , 42, 63–70.

Conallen, J. (2003). Building Web applications with UML; Second Edition. Boston:
Pearson Education, Inc.

Dijkstra, E. (1982). Selected writings on computing: A personal perspective. New York:
Springer-Verlag.

Elmasri, R., & Navathe, S. B. (2007). Fundamentals of database systems. Boston:
Pearson.

Erl, T. (2005). Service-oriented architecture: Concepts, technology, and design.
Crawfordsville, IN: Prentice Hall.

Erl, T. (2008). SOA: Principles of service design. Boston, MA: Prentice Hall.

Irani, R. (2001, November 21). Web services architect. Retrieved February 11, 2010,
from http://www.webservicesarchitect.com/content/articles/irani07.asp

Jovanovic, J. (2010, February 25). Designing user interfaces for business Web
applications. Retrieved July 26, 2010, from http://www.smashingmagazine.com
/2010/02/25/designing-user-interfaces-for-business-web-applications/

Larman, C. (2005). Applying UML and patterns: An introduction to obect-oriented
analysis and design and iterative development. 3rd Edition. Upper Saddle River:
Prentice Hall.

Leffingwell, D., & Widrig, D. (2003). Managing software requirements: A use case
approach. Boston, MA: Addison-Wesley.

Marks, E. A., & Bell, M. (2006). Service-oriented architecture. A planning and
implementation guide for business and technology. Hoboken, NJ: John Wiley &
Sons, Inc.

Marwell, G., & Schmitt, D. R. (1967). Dimensions of compliance-gaining behavior:An
empirical analysis. Sociometry, 30, 350–364.

 136

Miller, G. R. (1980). On being persuaded: Some basic distinctions. Thousand Oaks, CA:
Sage Publishing, Inc.

Naval Research Laboratory. (2010, May 19). STEP[Powered by SCIL]. Retrieved August
1, 2010, from http://10.3.21.1:8084/STEP/login.jsp

Papazoglou, M. P., & van den Heuvel, W.-J. (2007). Service oriented architectures:
approaches, technologies and research issues. The VLDB Journal, 16, 389–415.

Schussel, G. (n.d.). Client/Server: Past, present and future. Retrieved November 13,
2009, from http://www.dciexpo.com/geos/dbsejava.htm

Spies, B. (2008, May 2). Web services, Part 1: SOAP vs. REST. Retrieved March 12,
2010, from http://www.ajaxonomy.com/2008/xml/web-services-part-1-soap-vs-
rest

Tong, R. (n.d.). MITRE. Retrieved July 15, 2010, from https://partners.mitre.org/sites/SCI
L/Shared%20Documents/STEP%20WEB%20SERVICES/STEP%20Web%20Ser
vices%20Specification%20(v1.2)/stepPortTypes_12.wsdl

W3C. (2001, March 15). Web services description language (WSDL). Retrieved January
22, 2010, from http://www.w3.org/TR/wsdl

W3C. (2004, February 11). Web services architecture. Retrieved March 15, 2010, from
http://www.w3.org/TR/ws-arch/

W3C. (2004, October 28). W3C XML schema part 2: Datatypes second edition. Retrieved
July 14, 2010, from http://www.w3.org

Zimmermann, O., Tomlinson, M., & Peuser, S. (2003). Perspectives on Web services:
Applying SOAP, WSDL and UDDI to real-world projects. Heidelberg: Springer.

 137

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Peter Denning
Naval Postgraduate School
Monterey, California

4. Professor Man-Tak Shing
Naval Postgraduate School
Monterey, California

5. Professor Bret Michael
Naval Postgraduate School
Monterey, California

6. Professor Craig Martell
Naval Postgraduate School
Monterey, California

7. Marine Corps Representative
Naval Postgraduate School
Monterey, California

8. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

9. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

10. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
 Camp Pendleton, California

